一些可以用动态规划(DP)算法解决的问题(C++)

一、动态规划问题
来源: 暴力搜索->记忆式搜索->经典的动态规划->改进的动态规划。这也是动态规划问题的求解步骤。
本质: 利用空间来换取时间。把一个问题分解为相同的子问题,这些子问题的求解是有顺序的,按顺序一步一步求解,前面的步骤和决策使得问题的状态转移到当前状态,当前状态再做出最优的决策,使问题转移到下一个状态,当问题进入最后一个状态时的解就是原问题的解。

二、练习题
1、 有数组penny,penny中所有的值都为正数且不重复。每个值代表一种面值的货币,每种面值的货币可以使用任意张,再给定一个整数aim(小于等于1000)代表要找的钱数,求换钱有多少种方法。

解法(1):按照经典的动态规划步骤进行,空间复杂度为O(n*aim)
class  Exchange {
public :
     int  countWays(vector< int > penny,  int  n,  int  aim) {
         if  (penny.empty()||n ==  0 )
             return  0 ;
         vector<vector< int > > dp(n,vector< int >(aim+ 1 ));
         for  ( int  i =  0 ;i < n;i++) {
             dp[i][ 0 ] =  1 ;
         }
         for  ( int  j =  1 ;j < aim+ 1 ;j++) {
             dp[ 0 ][j] = j%penny[ 0 ] ==  0 ? 1 : 0 ;
         }   
         
         for  ( int  i =  1 ;i < n;i++) {
             for  ( int  j =  1 ;j < aim+ 1 ;j++) {
                 dp[i][j] = (j-penny[i]) >=  0 ?(dp[i- 1 ][j] + dp[i][j-penny[i]]):dp[i- 1 ][j];                   
             }
         }
         return  dp[n- 1 ][aim];
     }
};

解法(2):步骤与经典的动态规划问题一样,但是空间复杂度仅为O(aim)。其实在求dp矩阵时,都是根据上一行的值迭代出当前行的值,所以完全可以只用一维矩阵来存储,不断地更新一维矩阵即可。
class  Exchange {
public :
     int  countWays(vector< int > penny,  int  n,  int  aim) {
         vector< int > dp(aim +  1 );
         for  ( int  i =  0 ; i <= aim; i++)
             if  (i % penny[ 0 ] ==  0 )
                 dp[i] =  1 ;
 
         for  ( int  i =  1 ; i < n; i++)
             for  ( int  j =  1 ; j <= aim; j++)
                 if  ( j >= penny[i])
                     dp[j] += dp[j - penny[i]];
         return  dp[aim];
     }
};

2、有n级台阶,一个人每次上一级或者两级,问有多少种走完n级台阶的方法。
解法: f(n)=f(n-1)+f(n-2) 。如果直接用递归式求解,中间有很多重复的计算, f(n-1) 分支计算过的还得在 f(n-2) 分支计算一次。然后状态之间的依赖关系是很容易找出了,用动态规划法,一步一步记录相邻两个状态即可,下一个状态等于这两个状态之和。
class  GoUpstairs {
public :
     int  countWays( int  n) {
         vector< int > dp( 2 , 0 );
         dp[ 0 ] =  1 ;
         dp[ 1 ] =  2 ;
         int  temp;
         for  ( int  i =  3 ;i <= n;i++) {
             temp = dp[ 0 ];
             dp[ 0 ] = dp[ 1 ];
             dp[ 1 ] = (dp[ 1 ]+temp)% 1000000007 ;
         }
         return  dp[ 1 ]% 1000000007 ;
     }
};


3、 有一个矩阵 map ,它每个格子有一个权值。从左上角的格子开始每次只能向右或者向下走,最后到达右下角的位 置,路径上所有的数字累加起来就是路径和,返回所有的路径中最小的路径和。
解法: f(n,m)=min(f(n-1,m),f(n,m-1))+map[n][m] 。递归式同样包含很多重复计算,可以根据状态之间的依赖关系一步一步计算出来。走到第一行每个格子的最小路径和很容易求出。根据第一行可以依次求出第二行,依次进行直到计算到最后一行。

class  MinimumPath {
public :
     int  getMin(vector<vector< int > > map,  int  n,  int  m) {
         vector< int > dp(m, 0 );
         dp[ 0 ] = map[ 0 ][ 0 ];
         for  ( int  i =  1 ,j =  0 ;i < m;i++,j++) {
             dp[i] = map[ 0 ][i]+dp[j];
         }
         
         for  ( int  i =  1 ;i < n;i++) {
             dp[ 0 ] += map[i][ 0 ];
             for  ( int  j =  1 ;j < m;j++) {
                 dp[j] = min(dp[j],dp[j- 1 ])+map[i][j];
             }
         }
         return  dp[m- 1 ];
     }
};


4、(经典的LIS问题)请设计一个尽量优的解法求出序列的最长上升子序列的长度
解法:用dp数组的dp[i]记录下以A[i]结尾的递增子序列中最长的长度,计算dp[i+1]时,遍历A[0~i]找到比A[i+1]小的元素,再比较与这些元素对应的dp数组中的值,找到最大的一个再加1,赋值给dp[i+1]。
class  LongestIncreasingSubsequence {
public
:
     int  getLIS(vector< int > A,  int  n) {
         if  (A.empty()||n ==  0 )
             return   0 ;   
        vector< int > dp(n, 0 );
        dp[ 0 ] =  1 ;
         int  resMax =  0 ;
         for  ( int  i =  1 ;i < n;i++) {
             int  tempMax =  0 ;
             for  ( int  j =  0 ;j < i;j++) {
                 if  (A[i] > A[j])
                    tempMax = max(tempMax,dp[j]);
            }
            dp[i] = ++tempMax;
            resMax = max(resMax,dp[i]);
        }
         return  resMax;
    }
};

5、给定两个字符串A和B,返回两个字符串的最长公共子序列的长度。例如,A="1A2C3D4B56",B="B1D23CA45B6A", 123456或者12C4B6都是最长公共子序列。
解法 经典的动态规划题目(LCS 。利用动态规划表求解。dp[i][j]表示A[0~i]和B[0~j]的最长公共子序列长度。如果A[i]=B[j],  dp[i][j]一定是dp[i-1][j-1]+1,若 A[i]!=B[j],则 dp [i][j]要么是dp[i-1][j],要么是dp[i][j-1]。

(1)常规解法:对第一行和第一列的处理不够巧妙。
class  LCS {
public :
     int  findLCS(string A,  int  n, string B,  int  m) {
          if  (A.empty()||n== 0 ||B.empty()||m== 0 )
             return  0 ;
         vector<vector< int > > dp(n,vector< int >(m));
         
         for  ( int  i =  0 ;i < m;i++) {
             if  (A[ 0 ] == B[i]) {
                 for  ( int  j = i;j < m;j++)
                     dp[ 0 ][j] =  1 ;
                 break  ;
             }               
         }
         
         for  ( int  i =  0 ;i < n;i++) {
             if  (B[ 0 ] == A[i]) {
                 for  ( int  j = i;j < n;j++)
                     dp[j][ 0 ] =  1 ;
                 break  ;
             }               
         }
         
         for  ( int  i =  1 ;i < n;i++) {
             for  ( int  j =  1 ;j < m;j++) {
                 if  (A[i] == B[j])
                     dp[i][j] = dp[i- 1 ][j- 1 ]+ 1 ;
                 else
                     dp[i][j] = max(dp[i- 1 ][j],dp[i][j- 1 ]);
             }
         }
         return  dp[n- 1 ][m- 1 ];
     }
};

(2)最优解:dp矩阵多申请了一行和一列,从而将第一行和第一列的处理融合到后序的处理中。
class  LCS {
public :
     int  findLCS(string A,  int  n, string B,  int  m) {           
         vector<vector< int > > dp(n+ 1 ,vector< int >(m+ 1 , 0 ));  
         for  ( int  i = 1 ;i<=n ;++i){               
             for  ( int  j= 1 ; j<=m; ++j){
                 if  (A[i- 1 ] == B[j- 1 ]){
                     dp[i][j]  = dp[i- 1 ][j- 1 ]+ 1 ;
                 }
                else  {
                     dp[i][j] = max( dp[i- 1 ][j] ,dp[i][j- 1 ]);
                 }                   
             }
         }
         return  dp[n][m];
     }
};

6、一个背包有一定的承重cap,有N件物品,每件都有自己的价值,记录在数组v中,也都有自己的重量,记录在数组w中,每件物品只能选择要装入背包还是不装入背包,要求在不超过背包承重的前提下,选出物品的总价值最大。
解法:经典的 01背包问题。同样利用动态规划表来求解。
(1)常规解法:用常规的二维矩阵dp作为动态规划表,第一行第一列单独提前处理。空间复杂度略高。
class  Backpack {
public :
     int  maxValue(vector< int > w, vector< int > v,  int  n,  int  cap) {
         if  (w.empty()||v.empty()||n== 0 ||cap== 0 )
             return  0 ;
         vector<vector< int > > dp(n,vector< int >(cap+ 1 ));
         
         for  ( int  j =  1 ;j < cap+ 1 ;j++) {
             dp[ 0 ][j] = w[ 0 ] <= j?v[ 0 ]: 0 ;
         }
         for  ( int  i =  0 ;i < n;i++) {
             dp[i][ 0 ] =  0 ;
         }
         
         for  ( int  i =  1 ;i < n;i++) {
             for  ( int  j =  1 ;j < cap+ 1 ;j++) {
                 if  (w[i] > j)
                     dp[i][j] = dp[i- 1 ][j];
                 else
                     dp[i][j] = max(dp[i- 1 ][j],v[i]+dp[i- 1 ][j-w[i]]);
             }
         }
         return  dp[n- 1 ][cap];
     }
};

(2)更优的解法:用一维矩阵dp作为动态规划表。每次用复制构造函数记录上一行的求解结果,根据上一行的求解结果求出当前行的结果后再记录到dp矩阵中。空间复杂度略好。
class  Backpack {
public
:
     int  maxValue(vector< int > w, vector< int > v,  int  n,  int  cap) {
         if  (w.empty()||v.empty()||n== 0 ||cap== 0 )
             return  0 ;
        vector< int > dp(cap+ 1 , 0 );        
         for  (int i =  0 ;i < n;i++) {
             vector< int > last(dp);
             for  (int j =  1 ;j < cap+ 1 ;j++) {
                dp[j] = j < w[i]?last[j]:max(last[j],v[i]+last[j-w[i]]);                
            }
        }
         return  dp[cap];
    }
};

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值