如果争论不欢而散,那么必有一方是虚伪的

转载 2013年12月16日 15:02:11


我们往往会为一些跟自身利益比较远的事情,比如说美式民主制度是否适合中国,超弦是不是一个好的物理理论,或者阿根廷队是否能获得本届世界杯冠军这类问题争论。这种争论的结果往往是不欢而散,大家各持立场,很少妥协。

每个人都认为自己是对事不对人。每个人都认为自己在争论过程中是真诚的。是吗?

诺贝尔奖得主罗伯特·奥曼(Robert Aumann)在 1976 年发表了一篇论文《不一致的达成》( “Agreeing to Disagree”),这篇论文影响深远堪称传世之作,它对上面问题的结论是:这是不可能的。如果是两个理性而真诚的真理追求者争论问题,争论的结果必然是二人达成一致。换句话说如果争论不欢而散,那么其中必然有一方是虚伪的。

这是一个有点令人吃惊的结论。我先把奥曼的原话抄下:

If two people have the same priors, and their posteriors for an event A are common knowledge, then these posteriors are equal.

这段话中有很多专业术语,比如什么叫 priors, 什么叫 posteriors,什么叫 common knowledge,都需要外行学习一番。奥曼在文中非常谦虚地说,我发表这篇文章感到有点不好意思(diffidence),因为其中用到的数学实在太不值一提了。我从来没在任何一篇其他的学术论文中看到有人使用 diffidence 来形容自己的工作,大家都是猛吹我的工作多么重要。实际情况是,没有一定的数学基础很难看懂此文。

借助于一篇后来人写的综述,我大概可以解释一下奥曼的意思。如果你跟我对于一般足球理论的认识一致,换句话说,也就是说如果你认为梅西对阿根廷队很重要,我也这样认为,这就可以说我们的“priors” 是一致的。也就是说我们两个理性的人就好比两台计算机,如果给我们完全相同的输入,我们可以计算出相同的结果来。

下面为简单起见,假设世界杯决赛是阿根廷对意大利。在决赛前夜,如果我向你宣布,我认为阿根廷队将获得世界杯冠军。而你向我宣布,你认为意大利队将获得世界杯冠军。这样一来我们两人的观点就被亮出来了,也就是说不但你知道我的观点,而且我知道你知道我的观点,而其你知道我知道你知道我的观点…… 这叫我们的观点是 “common knowledge”。

奥曼的数学定理的伟大之处在于,我不必告诉你我为什么相信阿根廷队夺冠,你也不必告诉我你为什么相信意大利队夺冠,我们两人就可以最终就谁夺冠这个问题达成一致!

我们的争论过程大约是这样的:

我:我认为明天决赛阿根廷队将夺冠。
你:了解。但我认为意大利队将夺冠。
我:收到。但我仍然认为阿根廷队夺冠。
你:意大利队。
我:阿根廷队。
你:意大利队。
我:好吧,意大利队。

我们就这样达成了一致。

这个争论过程有点像古龙小说的情节,但并不好笑。当我第一次说我认为阿根廷队夺冠的时候,你应该了解,我一定是掌握了某些赛前信息才敢这样说,比如我深入研究过双方的实力对比。而当你听到我的观点之后却反对我的观点的时候,我就知道,你一定掌握了更强的信息。也许你有内幕消息知道梅西伤情严重上不了场。我不知道具体是什么信息,但我可以从你此时的态度判断这个信息一定很强。而我如果在这个情况下仍然坚持认为阿根廷队夺冠,你就得进一步了解我一定掌握更强的信息,比如我知道裁判向着阿根廷。以此类推,直到几次往返之后我发现你仍然坚持意大利队,那我只好认为你刚刚从未来穿越回来,于是我决定赞同你的意见。

所以两个理性的人只要进行古龙式对话就可以达成一致。据我最近看 The Big Questions 这本书介绍,更进一步,经济学家 John Geanakoplos 和 Herakles Polemarchakis 证明这个对话不可能永远继续下去——也就是说最后一定会达成一致。再进一步,计算机科学家 Scott Aaronson 证明,如果对话双方都是诚实的,那么这种对话可以在不太多的几步内结束。

有人可能会提出,前面说的一致的“priors” ,是一个特别强的条件。毕竟生活中的理性人并非都学习过足球理论。也许两个人对梅西的重要性有不同看法。但是这个“不同看法”也是可以通过古龙式争论达成一致的!所以我们可以说,两个真诚而理性的人应该对事情有相同的看法。如果争论不欢而散,一定是有人不诚实!

我做了一点小调研,这个理论有很多推论。比如说一个真正理性的人,如果他认为其他人也是理性的,那么他不应该买股票。为什么?如果他买股票,就必然有人卖这支股票 — 这就意味着两人对这只股票的升值前景(不一定是确切的预测,可以是一个概率)有不同看法。可是奥曼已经证明理性的人不应该有这种不同看法。

这个定理中所假设的理性的人,被学者成为“truthseekers”,真理追求者。如果我们是诚实的真理追求者,我们终将能够达成一致。


 

最后说一点题外话。很多人认为搞科研主要是人跟自然的斗争,但真正的科研工作也包括人跟人干——不是说官僚主义或办公室政治,而是科学家跟科学家因为学术观点不同开打。从某种意义上讲,往顶级学术期刊投稿跟打仗差不多。所谓同行评议(Peer review),也就是编辑找几个跟你同一领域也是搞科研的人来审查你的文章。一个最可怕的消息是,这帮人有时候跟你一样,常常以为只有自己才有资格在这个期刊上发文章。如果他们直接说你的结果不够重要所以不适合发表,那你基本完了。但如果他们说你的文章错了,则是一个比较好的消息,因为很可能他们错了。

你要做的是写一个答辩状,证明是审稿人错了。然后有可能会发生一件也许只有在学术界才能发生的奇迹:审稿人将承认错误,改变想法,允许你的文章发表。

生活中的成年人如果不被双规,很少承认自己的错误。一场日常争论之后没人会说“我以前想错了,原来是这样”。但是科学家可以。科学家也会拉帮结派,也会有各种偏见,也会以证明别人错了为乐,但是所有科学家有一个共同优点:他允许你改变他的想法。这种允许别人改变思想的氛围可以刺激人在审稿的时候采取更为大胆的态度。

为什么?因为科学家是真理追求者。实际上,搞科研的一大乐趣就是被别人改变想法!

 

本文来源: 学而时嘻之

组合数学引论 第一章 答案 13-16

13.答案:mn= 1+n^2; (hint:将三角形等分成相同大小的三角形,然后根据鸽巢原理) 14.答案:证明跟第4题类似。 15.从1,2,...2n中任选n+1个整数,则其中必有两个数...
  • wjk20120522
  • wjk20120522
  • 2013年12月31日 17:10
  • 2168

wikioi 2597 团伙

题目描述 Description 1920年的芝加哥,出现了一群强盗。如果两个强盗遇上了,那么他们要么是朋友,要么是敌人。而且有一点是肯定的,就是: 我朋友的朋友是我的朋友; 我敌人的敌人也...
  • u014634338
  • u014634338
  • 2014年10月05日 20:59
  • 728

平衡的括号Uva-673

题意大概:输入一个包括“()”和“[ ]”的括号序列,判断是否合法。具体规则如下: 1.空串合法。 2.如果A和B都合法,那么AB也合法。 3.如果A合法,那么[A]和(A)都合法。 思路: ...
  • u014004096
  • u014004096
  • 2015年01月15日 21:45
  • 639

如果牛顿是程序员,那么?

 作文程序员,你会写代码,但你知道你今天之所以有电脑给你写代码,那是因为有他的存在吗?他就是牛顿,那个曾经被苹果砸的牛顿。3月28日是牛顿的忌日,但是知道的人很少,我们毕竟更关心沈殿霞和张国...
  • i_like_cpp
  • i_like_cpp
  • 2015年08月11日 23:46
  • 376

判断回文数 (水)

判断回文数 Problem Description 如果一个数是左右对称,那么就是回文数。比如1、1221、121、1234567890987654321是回文数,而100、12345432不...
  • yanghui07216
  • yanghui07216
  • 2016年04月19日 16:50
  • 323

PAT练习基础编程题目之 厘米换算英尺英寸

厘米换算英尺英寸导语:前段时间,有一个多月吧,一直在忙着课题的事情,于是PAT练习不知不觉就放下了一大段子,实属不该,重新开始,还是坚持吧。 - 如果已知英制长度的英尺footfootfoot和英...
  • xiaozhouchou
  • xiaozhouchou
  • 2016年01月09日 12:58
  • 3278

求数根的简单算法

#include  using namespace std; int n; int main() { cin>>n; cout }
  • scanferror
  • scanferror
  • 2017年11月28日 10:41
  • 109

pat中文练习题:简单题:1001. 害死人不偿命的(3n+1)猜想

卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的...
  • iceyung
  • iceyung
  • 2015年04月11日 21:52
  • 956

5-1 厘米换算英尺英寸 (15分)

注明:我自己是在暑假和寒假做的题目,有不懂的我应该上网百度参考大神的解题思路,时间太久,不记得是自己写的还是来自网上的思路了,未能注明出处,还希望不要介意,但是发表出来的,应该是本人所写,也有做的不好...
  • qq_26570353
  • qq_26570353
  • 2016年04月02日 10:42
  • 1139

nyoj 42 一笔画问题 无向图的欧拉回路

一笔画问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一...
  • qq_27437781
  • qq_27437781
  • 2017年04月24日 21:01
  • 362
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:如果争论不欢而散,那么必有一方是虚伪的
举报原因:
原因补充:

(最多只允许输入30个字)