Part1:传送门&吐槽
水题... 
 然而由于线筛里面的
  
   j
  打成了
Part2:题目分析
这个正方形是对称的… 
 而且很显然对角线上只有一个点会被看到… 
 所以我们只需要考虑对角线下面的一半(标红的).. 
 (其实你想考虑上面一半也无所谓→_→ 
  
 显然,对于点
  
   (i,j)
  如果
  
   gcd(i,j)≠1
  ,那么一定会被
  
   (igcd(i,j),jgcd(i,j))
  挡住… 
 所以我们要找第
  
   i
  列中,
也就是
 而很明显这就是欧拉函数的定义… 
 也就是说这个题让求的不过是
  
   ∑ni=2φ(i−1)
   
 而欧拉函数是个积性函数, 可以被线筛出来.. 
 线筛的原理啊证明啊什么的baidu一下就有很多啦(其实是因为我不会啊→_→ 
 所以也就做完了..
Part3:代码
由于是水题我都懒得压行了(喜闻乐见)(水题你1A也行啊
#include <cstdio>
const int N=40404;
int prime[N],tot,phi[N];
bool notp[N];
void euler(int n){
    phi[1]=1; notp[1]=1;
    for(int i=2;i<=n;++i){
        if(!notp[i]) prime[++tot]=i,phi[i]=i-1;
        for(int j=1;j<=tot&&i*prime[j]<=n;++j){ //就这个地方我写成++i了
            notp[i*prime[j]]=1;
            if(i%prime[j]==0){
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }else phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
}
int main(){
    int n,ans=1; scanf("%d",&n); euler(n);
    for(int i=1;i<n;++i) ans+=phi[i]*2;
    printf("%d",ans);
} 
Part4:好像没什么可注意的事项…
- 好像有一条.. φ(1)=1
 - 好像还有一条.. 我们只考虑了一半,所以记得 ∗2
 - 怎么还有一条.. 别忘了对角线上那个点哦~
 - 这次应该是真没了.. 完结撒花吧..
 
                  
                  
                  
                  
                            
本文介绍了一道关于欧拉函数的算法题,通过分析题目得出只需计算∑ni=2φ(i−1)即可,利用欧拉函数的性质进行线筛优化,并给出了具体的实现代码。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					785
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            