这里可能包含传送门
又双叒叕数论大杂烩…
定理什么我都不会证
题目很长很啰嗦 但是题意很显然… 化完式子之后就是这么个东东:
G∑k|nCnkk mod p
看上去好像也并不怎么好求…
而
p
是个质数,由于费马小定理,我们知道
所以我们相当于要求
G∑k|nCnkk%(p−1) mod p
看到大组合数取模自然想到Lucas定理…
可是这里的
p−1
并不是质数…
质因数分解:
999911658=2∗3∗4679∗35617
(Emmmm这里我偷了个懒在线分解了←_←
对四个质数分别做Lucas就可以写出下面这一堆东西, 然后直接CRT(中国剩余定理(孙子定理))就行了…
好像就做完了OvO
Emmmm,
地球人看不懂的代码
(我对不起党对不起人民对不起社会地又双叒叕压行了)
谁让数论题一行一个函数压行太舒服了呢→_→
#include <cmath>
#include <cstdio>
typedef long long LL;
const int P=999911658;const int pr[]={2,3,4679,35617};LL fac[4][36666],c[4],N,G,blk; //懒得写质因数分解..(而且可能能避免一些麻烦??)
void exgcd(LL a,LL b,LL &x,LL &y){if(!b)x=1,y=0;else exgcd(b,a%b,y,x),y-=(a/b)*x;}
LL qpow(LL a,LL b,LL p,LL s=1){for(;b;b>>=1,a=a*a%p)if(b&1)s=s*a%p;return s;}
LL inv(LL a,LL b,LL x=0,LL y=0){if(!a)return 0;exgcd(a,b,x,y);return(x%b+b)%b;}
void calcfac(){for(int i=0;i<4;++i){fac[i][0]=1;for(int j=1;j<=pr[i];++j)fac[i][j]=fac[i][j-1]*j%pr[i];}} //预处理阶乘
LL C(LL n,LL m,LL p,LL x=0){if(n<m) return 0; x=pr[p];return fac[p][n]*inv(fac[p][m],x)%x*inv(fac[p][n-m],x)%x;} //计算小于第p个质数的组合数
LL lucas(LL n,LL m,LL p,LL x=0){if(!m) return 1; x=pr[p];return C(n%x,m%x,p)*lucas(n/x,m/x,p)%x;} //基础的Lucas定理
LL CRT(LL x=0,LL y=0,LL ans=0){for(int i=0;i<4;++i)ans=(ans+c[i]*(P/pr[i])%P*inv(P/pr[i],pr[i])%P)%P;return ans;} //中国剩余定理辣~
void ANS(){for(int i=1;i<=blk;++i)if(N%i==0){for(int j=0;j<4;++j){if(i*i!=N) c[j]=(c[j]+lucas(N,i,j))%pr[j];c[j]=(c[j]+lucas(N,N/i,j))%pr[j];}}} //预处理阶乘对各个质数取模的答案(就是式子里的c1..c4)
int main(){scanf("%lld%lld",&N,&G);G%=P;if(!G){puts("0");return 0;}blk=sqrt(N);calcfac();ANS();printf("%lld",qpow(G,CRT(),P+1));}
我怎么会说注意事项
- 没有 pkii 这样的项就不需要扩展Lucas了…
- 阶乘处理的时候一定记得从0开始处理..
- 枚举k的时候只需从 1∼n√ 枚举, k|n 就直接把 Ckn 和 Cnkn 一起算了..( 1∼n 枚举我猜会T飞→_→
- 其实数论题全开long long好像是个不错的主意OvO…
- 好像是有边界数据要特判来着…(见下)
95才能看的边界数据
#13出锅? 看这里!!!
P.S. 这组数据是我从luogu上交4遍分别输出
N N%10000 G G%10000
抠出来的…
输入 | 输出 |
---|---|
999911657 999911659 | 0 |
要是不加特判直接做会输出1 就WA了…
其实我第一遍WA意识到要加特判但是加错了OvO
(你可以看到我代码里的
P
<script type="math/tex" id="MathJax-Element-13">P</script>是多少然后你应该能猜到出了什么问题→_→
这个部分真啥都没有
其实就是啥都没有…完结撒花~