mapreduce排序和二次排序以及全排序

原创 2013年12月05日 12:02:04
自己学习排序和二次排序的知识整理如下。
1.Hadoop的序列化格式介绍:Writable
2.Hadoop的key排序逻辑
3.全排序
4.如何自定义自己的Writable类型
5.如何实现二次排序


1.Hadoop的序列化格式介绍:Writable
要了解和编写MR实现排序必须要知道的第一个知识点就是Writable相关的接口和类,这些是HADOOP自己的序列化格式。更多的可能是要关注他的Subinterfaces:WritableComparable<T>。他是继承Writable和Comparable<T>接口,继而WritableComparable<T>的实现除了具有序列化特性,更重要的是具有了比较的特性,而比较的特性在MapReduce里是很重要的,因为MR中有个基于键的排序过程,所以可以作为键的类型必须具有Comparable<T>的特性。
除了WritableComparable接口外,还有一个接口RawComparaotor。
WritableComparable和RawComparator两个接口的区别是:
WritableComparable是需要把数据流反序列化为对象后,然后做对象之间的比较,而RawComparator是直接比较数据流的数据,不需要数据流反序列化成对象,省去了新建对象的开销。

2.Hadoop的key排序逻辑
Hadoop本身Key的数据类型的排序逻辑其实就是依赖于Hadoop本身的继承与WritableComparable<T>的基本数据类型和其他类型(相关类型可参考《Hadoop权威指南》第二版的90页)的compareTo方法的定义。
Key排序的规则:
1.如果调用jobconf的setOutputKeyComparatorClass()设置mapred.output.key.comparator.class
2.否则,使用key已经登记的comparator
3.否则,实现接口WritableComparable的compareTo()函数来操作
例如IntWritable的比较算法如下:
Java代码  收藏代码
  1. public int compareTo(Object o) {  
  2.     int thisValue = this.value;  
  3.     int thatValue = ((IntWritable)o).value;  
  4.     return (thisValue<thatValue ? -1 : (thisValue==thatValue ? 0 : 1));  
  5.   }  
 
可以修改compareTo来实现自己所需的比较算法。

虽然我们知道是compareTo这个方法实现Key的排序,但其实我们在使用Hadoop的基本数据类型时不需要关注这个排序如何实现,因为Hadoop的框架会自动调用compareTo这个方法实现key的排序。但是这个排序只是局限在map或者reduce内部。针对于map与map,reduce与reduce之间的排序compareTo就管不着了,虽然这种情况不常出现,但是确实存在这种问题的,而且确实有适用场景,比如说全排序。

3.全排序
这里就需要关注Partition这个阶段,Partition阶段是针对每个Reduce,需要创建一个分区,然后把Map的输出结果映射到特定的分区中。这个分区中可能会有N个Key对应的数据,但是一个Key的所有数据只能在一个分区中。在实现全排序的过程中,如果只有一个reduce,也就是只有一个Partition,那么所有Map的输出都会经过一个Partition到一个reduce里,在一个reduce里可以根据compareTo(也可以采用其他比较算法)来排序,实现全排序。但是这种情况就让MapReduce失去了分布式计算的光环。
所以全排序的大概思路为:确保Partition之间是有序的就OK了,即保证Partition1的最大值小于Partition2的最小值就OK了,即便这样做也还是有个问题:Partition的分布不均,可能导致某些Partition处理的数据量远大于其他Partition处理的数据量。而实现全排序的核心步骤为:取样和Partition。
先“取样”,保证Partition得更均匀: 
1) 对Math.min(10, splits.length)个split(输入分片)进行随机取样,对每个split取10000个样,总共10万个样
2) 10万个样排序,根据reducer的数量(n),取出间隔平均的n-1个样
3) 将这个n-1个样写入partitionFile(_partition.lst,是一个SequenceFile),key是取的样,值是nullValue
4) 将partitionFile写入DistributedCache 
整个全排序的详细介绍可参照:http://www.iteye.com/topic/709986

4.如何自定义自己的Writable类型
自定义自己的Writable类型的场景应该很简单:Hadoop自带的数据类型要么在功能上不能满足需求,要么在性能上满足需求,毕竟Hadoop还在发展,不是所有情况都考虑的,但是他提供了自主的框架实现我们想要的功能。
定义自己的Writable类型需要实现:
a.重载构造函数
b.实现set和get方法
c.实现接口的方法:write()、readFields()、compareTo()
d.(可选)相当于JAVA构造的对象,重写java.lang.Object的hashCode()、equals()、toString()。Partition阶段默认的hashpartitioner会根据hashCode()来选择分区,如果不要对自定义类型做key进行分区,hashCode()可不实现
具体例子可参考hadoop的基本类型IntWritable的实现
Java代码  收藏代码
  1. public class IntWritable implements WritableComparable {  
  2.   private int value;  
  3.   
  4.   public IntWritable() {}  
  5.   
  6.   public IntWritable(int value) { set(value); }  
  7.   
  8.   /** Set the value of this IntWritable. */  
  9.   public void set(int value) { this.value = value; }  
  10.   
  11.   /** Return the value of this IntWritable. */  
  12.   public int get() { return value; }  
  13.   
  14.   public void readFields(DataInput in) throws IOException {  
  15.     value = in.readInt();  
  16.   }  
  17.   
  18.   public void write(DataOutput out) throws IOException {  
  19.     out.writeInt(value);  
  20.   }  
  21.   
  22.   /** Returns true iff <code>o</code> is a IntWritable with the same value. */  
  23.   public boolean equals(Object o) {  
  24.     if (!(o instanceof IntWritable))  
  25.       return false;  
  26.     IntWritable other = (IntWritable)o;  
  27.     return this.value == other.value;  
  28.   }  
  29.   
  30.   public int hashCode() {  
  31.     return value;  
  32.   }  
  33.   
  34.   /** Compares two IntWritables. */  
  35.   public int compareTo(Object o) {  
  36.     int thisValue = this.value;  
  37.     int thatValue = ((IntWritable)o).value;  
  38.     return (thisValue<thatValue ? -1 : (thisValue==thatValue ? 0 : 1));  
  39.   }  
  40.   
  41.   public String toString() {  
  42.     return Integer.toString(value);  
  43.   }  
  44. }  
 

5.如何实现二次排序
二次排序的工作原理涉及到如下几方面:
a.创建key的数据类型,key要包括两次排序的元素
b.setPartitionerClass(Class<? extends Partitioner> theClass)
hadoop0.20.0以后的函数为setPartitionerClass
c.setOutputKeyComparatorClass(Class<? extends RawComparator> theClass)
hadoop0.20.0以后的函数为setSortComparatorClass
d.setOutputValueGroupingComparator(Class<? extends RawComparator> theClass)
hadoop0.20.0以后的函数为setGroupingComparatorClass

根据hadoop自己提供的example:org.apache.hadoop.examplesSecondarySort来说明二次排序具体是如何实现的.

SecondarySort实现IntPair、FirstPartitioner、FirstGroupingComparator、MapClass、Reduce这几个内部类,然后在main函数中调用。先说明下main函数中有哪些地方和普通的MR代码不同。
不同点是多了这两个set:
job.setPartitionerClass(FirstPartitioner.class);
设置自定义的Partition操作,在此是调用我们自定义的内部类FirstPartitioner
job.setGroupingComparatorClass(FirstGroupingComparator.class);
设置哪些value进入哪些key的迭代器中,在此是调用自定义的内部类FirstGroupingComparator

具体的操作逻辑为:

a.定义一个作为key的类型IntPair,在IntPair中有两个变量first、second,SecondarySort就是在对first排序后再对second再排序处理
b.定义分区函数类FirstPartitioner,Key的第一次排序。在FirstPartitioner实现如何处理key的first,把key对应的数据划分到不同的分区中。这样key中first相同的value会被放在同一个reduce中,在reduce中再做第二次排序 
c(代码没有实现,其实内部是有处理).key比较函数类,key的第二次排序,是继承WritableComparator的一个比较器。setSortComparatorClass可以实现。
为什么没有使用setSortComparatorClass()是因为hadoop对key排序的规则(参看2.Hadoop的key排序逻辑)决定的。由于我们在IntPair中已经定义了compareTo()函数。
d.定义分组函数类FirstGroupingComparator,保证只要key的的第一部分相同,value就进入key的value迭代器中
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

map/reduce二次排序

mr自带的例子中的源码SecondarySort,我重新写了一下,基本没变。 这个例子中定义的map和reduce如下,关键是它对输入输出类型的定义:(java泛型编程)  public stat...

Hadoop MapReduce做大数据排序

1. 我们知道mapreduce天生适合作排序,由于他有一个shuffer的过程,当数据量很少的时候我们可以把reduce的num设置成1来进行排序,但是如果数据量很大,在一个reduce上处理不过来...

利用hadoop mapreduce 做数据排序

我们的需求是想统计一个文件中用IK分词后每个词出现的次数,然后按照出现的次数降序排列。也就是高频词统计。 由于hadoop在reduce之后就不能对结果做什么了,所以只能分为两个job完成,第一个...
  • jkh753
  • jkh753
  • 2013-10-12 09:15
  • 5433

mapreduce实现多文件自定义输出

本人在项目中遇到一个问题,就是在处理日志的时候,需要有多个key,比如一行日志是 domain sip minf h b 而我处理的时候需要map输出为 key:domain+minf value ...

Hive自定义UDF-RowNumber

1. hive0.10及之前的版本没有row_number这个函数,假设我们现在出现如下

MapReduce排序过程详解

Hadoop、Spark等分布式数据处理框架在宣传自己的性能时大都以排序效果来做比较,各种类别的Sort Benchmark已成为行业基准测试。之所以选择排序是因为排序的核心是shuffle操作,数据...

mapreduce框架中的全局变量的设置

最近刚完成了一个基于mapreduce的autoencoder并行算法设计与实现,打算写一篇代码剖析,在此之前先整理一下用到的几个技术点。 ------------------------------...

【Mapreduce】排序与降序

Mapreduce在Map与Reduce之间的处理,会对Key进行升序排序,如果这个Key是Text类型则是按Key的首字母进行升序排序的,如果Key是IntWritable类型,则按大小进行升序排序...

mapreduce编程(一)-二次排序

mr自带的例子中的源码SecondarySort,我重新写了一下,基本没变。 这个例子中定义的map和reduce如下,关键是它对输入输出类型的定义:(java泛型编程)  public stat...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)