2016"百度之星"-资格赛-1001-A

原创 2016年05月30日 18:47:57
不是太会用markdown,这个题目也有些数学公式不好搞,所以直接给题目链接吧。
[题目](http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=690&pid=1001)

这道题如果想要AC,需要用到逆元。这里,因为我们要求从x到y的每个字符的(ASCII 码值-28)的值的积(mod9973),所以需要把前缀积保存起来,最后用num[y]/num[x-1]%MOD,因为MOD是奇数,所以相当于num[y]*inv(num[x-1]) (mod p),也就是说,我们需要保存的是前缀积和前缀积对应的逆元就好了。这里我们可以进行一个0-9972逆元的一个预处理,能够节省很多时间,代码如下。
//逆元  ax ≡ 1(mod m)  此同余方程中x的最小正整数解叫做a mod m的逆元
//a与m互素的情况下,通常通过扩展欧几里得求逆元,但是这里的m:9973为素数,也可以使用费马小定理
//求得逆元为a^(m - 2)mod m
//a与m不互素时,转换一下公式求逆元:ans = a / b mod m = a mod (mb) / b

#include <stdio.h>
#include <string.h>
#define MOD 9973

char s[100010];
int num[100010];
int p[100010];
int res[10000];

//快速幂
int inv(int a, int b)   //b = MOD - 2
{
    int ans = 1;
    while (b)
    {
        if (b & 1)
        {
            ans = ans * a % MOD;
        }
        b >>= 1;
        a = a * a % MOD;
    }
    return ans;
}

int main()
{
    int T;
    for (int i = 1; i < MOD; i++)
    {
        res[i] = inv(i, MOD - 2);
    }

    while (~scanf("%d", &T))
    {
        scanf("%s", s + 1);
        int len = (int)strlen(s + 1);
        num[0] = p[0] = 1;
        for (int i = 1; i <= len; i++)
        {
            num[i] = num[i - 1] * (s[i] - 28) % MOD;
            p[i] = res[num[i]];
        }
        while (T--)
        {
            int x, y;
            scanf("%d %d", &x, &y);
            printf("%d\n", num[y] * p[x - 1] % MOD);
        }
    }

    return 0;
}
之前没有学过逆元,这是第二次使用到这个,今天专门花了一天时间了解了一下逆元的用处,是个牛逼的东西。
版权声明:听说这里让写版权声明~~~ 举报

相关文章推荐

设计模式--抽象工厂

概述 在软件系统中,经常面临着“一系列相互依赖的对象”的创建工作;同时由于需求的变化,往往存在着更多系列对象的创建工作。如何应对这种变化?如何绕过常规的对象的创建方法(new),提供一种“封装机制”...

GCD

ACM模版GCD最大公约数int gcd(int x, int y) { if (!x || !y) { return x > y ? x : y; } ...
  • f_zyj
  • f_zyj
  • 2016-06-28 15:38
  • 796

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

ACM/ICPC竞赛之STL简介

ACM模版STL简介关于STLSTL(Standard Template Library,标准模版库)是C++语言标准中的重要组成部分。STL以模板类和模版函数的形式为程序员提供了各种数据结构和算法的...
  • f_zyj
  • f_zyj
  • 2016-06-23 19:52
  • 12834

博弈论

ACM模版Bash#define _MAX 10000 int a[_MAX]; int b[_MAX];int bash(int N, int K) { if (N % (K + 1) ==...
  • f_zyj
  • f_zyj
  • 2016-07-10 20:14
  • 760

H3C常用命令-1

计算机网络实验一

腾讯公司有奖活动电话是多少_〖腾讯官方网〗

★抽奖腾讯备案电话【0755↗3303↘↘7551】抽 奖 二 线【0755↗3303↘↘7551】活 动 热 线【0755↗3303↘↘7551】 幸 运 用 户 必 须 遵 守 领 奖 程 序 办...

ACM在线模版-f-zyj

试图打造最为完善最为工整的ACM竞赛模版!!!By-f-zyj 在线速查!赛前整理打印,为比赛做足准备-_-#
  • f_zyj
  • f_zyj
  • 2016-06-06 13:26
  • 61065

uggboot2u

相关的主题文章: http://wlk1220k.blogbus.com/logs/108055459.htmlhttp://manage.5lin.com/public/login.html?u...

RQNOJ:PID3 / Jam的计数法

解题思路我们可以用一个大小为t-s+1的数组标记可用字母的使用情况(1代表使用,0代表未使用),对于给定的字母序列,在标记数组中我们首先找到一个本位是1而后面一位是0的位,我们知道,其后面的部分没有办...

A^B约数之和

ACM模版A^B约数之和对MOD取模参考:《合数相关》/* * 求A^B的约数之和对MOD取模 * 需要素数筛选和合数分解的算法,需要先调用getPrime(); * 参考《合数相关》 ...
  • f_zyj
  • f_zyj
  • 2016-07-07 15:16
  • 551
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)