GCD

本文详细介绍了ACM竞赛中常见的GCD(最大公约数)算法及其扩展版本。主要内容包括基本GCD算法的实现及扩展GCD算法的应用场景,通过扩展GCD可以求得使gcd(a,b)=a*x+b*y成立的x和y的值。

ACM模版

GCD最大公约数

int gcd(int x, int y)
{
    if (!x || !y)
    {
        return x > y ? x : y;
    }

    for (int t; t = x % y, t; x = y, y = t) ;

    return y;
}

扩展GCD

/*
 *  求x,y使得gcd(a, b) = a * x + b * y;
 */
int extgcd(int a, int b, int &x, int &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }

    int d = extgcd(b, a % b, x, y);
    int t = x;
    x = y;
    y = t - a / b * y;

    return d;
}
在 Python 中,计算两个数的最大公约数(GCD)有多种方法,主要包括以下几种实现方式: ### 1. 使用内置库 `math` 中的 `gcd` 函数 Python 3.5 及以上版本的 `math` 模块提供了 `gcd` 函数,可以直接用于计算两个整数的最大公约数。该方法简洁高效,推荐在支持的环境中使用。 ```python import math a = 24 b = 45 print(math.gcd(a, b)) # 输出 3 ``` ### 2. 使用辗转相除法(欧几里得算法) 这是经典的数学算法,通过反复取余直到余数为零来求解最大公约数。其核心逻辑是将较大的数除以较小的数,并用较小的数和余数继续操作,直到余数为零,此时的除数即为最大公约数[^1]。 ```python def gcd(x, y): while y != 0: x, y = y, x % y return x print(gcd(24, 45)) # 输出 3 ``` ### 3. 使用更相减损法(辗转相减法) 这种方法通过不断用较大的数减去较小的数,直到两个数相等为止。该方法在没有取余操作的早期计算机中较为常用[^3]。 ```python def gcd_subtract(a, b): while a != b: if a > b: a -= b else: b -= a return a print(gcd_subtract(24, 45)) # 输出 3 ``` ### 4. 使用递归实现辗转相除法 递归方式可以更简洁地表达算法逻辑,适合理解函数式编程思想。 ```python def gcd_recursive(x, y): if y == 0: return x else: return gcd_recursive(y, x % y) print(gcd_recursive(24, 45)) # 输出 3 ``` ### 5. 使用 `fractions` 模块中的 `gcd` 函数(适用于 Python 3.5 之前版本) 在较早版本的 Python 中,可以使用 `fractions` 模块中的 `gcd` 函数,但该方法已在 Python 3.5 被 `math.gcd` 替代。 ```python from fractions import gcd print(gcd(24, 45)) # 输出 3 ``` ### 注意事项 - `math.gcd` 返回的结果始终为非负整数,即使输入包含负数。 - 如果输入的两个数均为零,则 `gcd` 无定义,但在某些实现中可能返回 `0`。 - 若需计算最小公倍数(LCM),可通过公式 `lcm(a, b) = abs(a * b) // gcd(a, b)` 实现[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值