HDU-2017 多校训练赛9-1006-Senior Pan

ACM最短路径题解
本文介绍了一道ACM竞赛中的最短路径问题,并通过Dijkstra算法进行求解。文章详细展示了使用C++实现的具体代码,包括节点结构定义、边的添加、优先队列的应用及初始化等关键步骤。

ACM模版

描述

描述

题解

官方题解:

描述

比赛时知道是最短路,但是没有写出来,真无奈ㄟ( ▔, ▔ )ㄏ……

代码

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

typedef long long ll;

const ll INF = 0x3f3f3f3f3f3f3f3f;
const int MAXN = 1e5 + 10;
const int MAGIC = 20;

struct Edge
{
    int v, val, net;
} edg[MAXN];

struct node
{
    int x;
    ll step;
};

int n, m, k, tot;
int hed[MAXN];
int a[MAXN];
int vis[MAXN];
ll dis[MAXN];
priority_queue<node> pqn;

bool operator < (node a, node b)
{
    return a.step > b.step;
}

void addedge(int u, int v, int val)
{
    edg[tot].v = v;
    edg[tot].val = val;
    edg[tot].net = hed[u];
    hed[u] = tot++;
}

ll dijkstra()
{
    while (!pqn.empty())
    {
        node now = pqn.top();
        pqn.pop();

        if (vis[now.x])
        {
            return now.step;
        }
        for (int i = hed[now.x]; ~i; i = edg[i].net)
        {
            int next = edg[i].v;
            if (dis[next] > now.step + edg[i].val)
            {
                dis[next] = now.step + edg[i].val;
                pqn.push(node{next, dis[next]});
            }
        }
    }

    return INF;
}

void init()
{
    memset(dis, 0x3f, sizeof(dis));
    memset(vis, 0, sizeof(vis));

    while (!pqn.empty())
    {
        pqn.pop();
    }
}

ll solve(int k)
{
    ll ans = INF;
    for (int i = 0; i < MAGIC; i++)
    {
        init();
        for (int j = 0; j < k; j++)
        {
            if (a[j] & (1 << i))
            {
                pqn.push(node{a[j], 0});
                dis[a[j]] = 0;
            }
            else
            {
                vis[a[j]] = 1;
            }
        }
        ans = min(ans, dijkstra());

        init();
        for (int j = 0; j < k; j++)
        {
            if (a[j] & (1 << i))
            {
                vis[a[j]] = 1;
            }
            else
            {
                pqn.push(node{a[j], 0});
                dis[a[j]] = 0;
            }
        }
        ans = min(ans, dijkstra());
    }

    return ans;
}

int main()
{
    int T;
    scanf("%d", &T);

    for (int ce = 1; ce <= T; ce++)
    {
        tot = 0;
        memset(hed, -1, sizeof(hed));

        scanf("%d%d", &n, &m);

        int u, v, w;
        while (m--)
        {
            scanf("%d%d%d", &u, &v, &w);
            addedge(u, v, w);
        }

        scanf("%d", &k);
        for (int i = 0; i < k; i++)
        {
            scanf("%d", &a[i]);
        }

        printf("Case #%d: %lld\n", ce, solve(k));
    }

    return 0;
}
内容概要:报告《细分车市洞察报告2025》指出,2025至2028年中国乘用车细分市场经历剧烈演变,入门级车市持续萎缩,紧凑型轿车与小型轿车份额大幅下滑,而紧凑型SUV、中型SUV等中高端车型崛起。2021至2026年,中国车市将呈现“向上+元”主旋律,受增换购、中年化、女性化和消费升级等趋势驱动,主流价区将由9-25万元上移至15-35万元。微型车因宏光MINI EV带动实现触底反弹,小型SUV面临转型压力,紧凑型SUV有望成为“第一车市”,中型SUV和中大型SUV成为新蓝海,MPV加速家用化,皮卡市场则需通过“破圈”实现突破。报告建议车企构建“向上+元”产品体系,积极布局中高端及细分市场。; 适合人群:汽车制造商、经销商、行业分析师、市场研究人员及相关产业链从业者。; 使用场景及目标:①了解中国车市细分结构的历史演变与未来趋势;②把握增换购、中年化、女性化等核心驱动因素对各细分市场的影响;③制定针对中型SUV、高端MPV、皮卡等新兴蓝海市场的战略布局;④优化产品定位,实现从入门级向中高端、从单一功能向元化场景的转型升级。; 阅读建议:本报告基于大量终端销量数据与用户调研,分析深入,建议结合图表与数据交叉验证,重点关注各细分市场的用户结构变化与竞争格局演变,用于指导产品规划与市场策略制定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值