(1.5.2.5)寻找最大的K个数

在面试中,有下面的问答:

问:有很多个无序的数,我们姑且假定它们各不相等,怎么选出其中最大的若干个数呢?

答:可以这样写:int array[100] ……

问:好,如果有更多的元素呢?

答:那可以改为:int array[1000] ……

问:如果我们有很多元素,例如1亿个浮点数,怎么办?

答:个,十,百,千,万……那可以写:float array [100 000 000] ……

问:这样的程序能编译运行么?

答:嗯……我从来没写过这么多的0 ……

分析与解法

【解法一】

当学生们信笔写下float array [10000000],他们往往没有想到这个数据结构要如何在电脑上实现,是从当前程序的栈(Stack)中分配,还是堆(Heap),还是电脑的内存也许放不下这么大的东西?

我们先假设元素的数量不大,例如在几千个左右,在这种情况下,那我们就排序一下吧。在这里,快速排序或堆排序都是不错的选择,他们的平均时间复杂度都是O(N * log2N)。然后取出前K个,O(K)。总时间复杂度O(N * log2N)+ O(K) = O(N * log2N)。

你一定注意到了,当K=1时,上面的算法也是O(N * log2N)的复杂度,而显然我们可以通过N-1次的比较和交换得到结果。上面的算法把整个数组都进行了排序,而原题目只要求最大的K个数,并不需要前K个数有序,也不需要后N-K个数有序。

怎么能够避免做后N-K个数的排序呢?我们需要部分排序的算法,选择排序和交换排序都是不错的选择。把N个数中的前K大个数排序出来,复杂度是O(N * K)。

那一个更好呢?O(N * log2N)还是O(N * K)?这取决于K的大小,这是你需要在面试者那里弄清楚的问题。在K(K < = log2N)较小的情况下,可以选择部分排序。

在下一个解法中,我们会通过避免对前K个数排序来得到更好的性能。

【解法二】

回忆一下快速排序,快排中的每一步,都是将待排数据分做两组,其中一组的数据的任何一个数都比另一组中的任何一个大,然后再对两组分别做类似的操作,然后继续下去……

在本问题中,假设N个数存储在数组S中,我们从数组S中随机找出一个元素X,把数组分为两部分Sa和Sb。Sa中的元素大于等于X,Sb中元素小于X。

这时,有两种可能性:

1. Sa中元素的个数小于K,Sa中所有的数和Sb中最大的K-|Sa|个元素(|Sa|指Sa中元素的个数)就是数组S中最大的K个数。

2. Sa中元素的个数大于或等于K,则需要返回Sa中最大的K个元素。

这样递归下去,不断把问题分解成更小的问题,平均时间复杂度O(N * log2K)。伪代码如下:

代码清单2-11

 
 
  1. Kbig(S, k):  
  2.     if(k <= 0):  
  3.         return []       // 返回空数组  
  4.     if(length S <= k):  
  5.         return S  
  6.     (Sa, Sb) = Partition(S)  
  7.     return Kbig(Sa, k).Append(Kbig(Sb, k - length Sa)  
  8.  
  9. Partition(S):  
  10.     Sa = [] // 初始化为空数组  
  11.     Sb = [] // 初始化为空数组  
  12.         // 随机选择一个数作为分组标准,  
  13.         以避免特殊数据下的算法退化  
  14.         // 也可以通过对整个数据进行洗牌预处理实现这个目的  
  15.         // Swap(S[1], S[Random() % length S])  
  16. p = S[1]  
  17.     for i in [2: length S]:  
  18.         S[i] > p ? Sa.Append(S[i]) : Sb.Append(S[i])  
  19. // 将p加入较小的组,可以避免分组失败,也使分组更均匀,提高效率  
  20. length Sa < length Sb ? Sa.Append(p) : Sb.Append(p)  
  21. return (Sa, Sb) 

【解法三】

寻找N个数中最大的K个数,本质上就是寻找最大的K个数中最小的那个,也就是第K大的数。可以使用二分搜索的策略来寻找N个数中的第K大的数。对于一个给定的数p,可以在O(N)的时间复杂度内找出所有不小于p的数。假如N个数中最大的数为Vmax,最小的数为Vmin,那么这N个数中的第K大数一定在区间[Vmin, Vmax]之间。那么,可以在这个区间内二分搜索N个数中的第K大数p。伪代码如下:

代码清单2-12

 
 
  1. while(Vmax - Vmin > delta)  
  2. {  
  3.     Vmid = Vmin + (Vmax - Vmin) * 0.5;  
  4.     if(f(arr, N, Vmid) >= K)  
  5.         Vmin = Vmid;  
  6.     else 
  7.         Vmax = Vmid;  
  8.     } 

伪代码中f(arr, N, Vmid)返回数组arr[0, …, N-1]中大于等于Vmid的数的个数。

上述伪代码中,delta的取值要比所有N个数中的任意两个不相等的元素差值之最小值小。如果所有元素都是整数,delta可以取值0.5。循环运行之后,得到一个区间(Vmin, Vmax),这个区间仅包含一个元素(或者多个相等的元素)。这个元素就是第K大的元素。整个算法的时间复杂度为O(N * log2(|Vmax - Vmin| /delta))。由于delta的取值要比所有N个数中的任意两个不相等的元素差值之最小值小,因此时间复杂度跟数据分布相关。在数据分布平均的情况下,时间复杂度为O(N * log2(N))。

在整数的情况下,可以从另一个角度来看这个算法。假设所有整数的大小都在[0, 2m-1]之间,也就是说所有整数在二进制中都可以用m bit来表示(从低位到高位,分别用0, 1, …, m-1标记)。我们可以先考察在二进制位的第(m-1)位,将N个整数按该位为1或者0分成两个部分。也就是将整数分成取值为[0, 2m-1-1]和[2m-1, 2m-1]两个区间。前一个区间中的整数第(m-1)位为0,后一个区间中的整数第(m-1)位为1。如果该位为1的整数个数A大于等于K,那么,在所有该位为1的整数中继续寻找最大的K个。否则,在该位为0的整数中寻找最大的K-A个。接着考虑二进制位第(m-2)位,以此类推。思路跟上面的浮点数的情况本质上一样。

对于上面两个方法,我们都需要遍历一遍整个集合,统计在该集合中大于等于某一个数的整数有多少个。不需要做随机访问操作,如果全部数据不能载入内存,可以每次都遍历一遍文件。经过统计,更新解所在的区间之后,再遍历一次文件,把在新的区间中的元素存入新的文件。下一次操作的时候,不再需要遍历全部的元素。每次需要两次文件遍历,最坏情况下,总共需要遍历文件的次数为2 * log2(|Vmax - Vmin|/delta)。由于每次更新解所在区间之后,元素数目会减少。当所有元素能够全部载入内存之后,就可以不再通过读写文件的方式来操作了。

此外,寻找N个数中的第K大数,是一个经典问题。理论上,这个问题存在线性算法。不过这个线性算法的常数项比较大,在实际应用中效果有时并不好。

【解法四】

我们已经得到了三个解法,不过这三个解法有个共同的地方,就是需要对数据访问多次,那么就有下一个问题,如果N很大呢,100亿?(更多的情况下,是面试者问你这个问题)。这个时候数据不能全部装入内存(不过也很难说,说知道以后会不会1T内存比1斤白菜还便宜),所以要求尽可能少的遍历所有数据。

不妨设N > K,前K个数中的最大K个数是一个退化的情况,所有K个数就是最大的K个数。如果考虑第K+1个数X呢?如果X比最大的K个数中的最小的数Y小,那么最大的K个数还是保持不变。如果X比Y大,那么最大的K个数应该去掉Y,而包含X。如果用一个数组来存储最大的K个数,每新加入一个数X,就扫描一遍数组,得到数组中最小的数Y。用X替代Y,或者保持原数组不变。这样的方法,所耗费的时间为O(N * K)。

进一步,可以用容量为K的最小堆来存储最大的K个数。最小堆的堆顶元素就是最大K个数中最小的一个。每次新考虑一个数X,如果X比堆顶的元素Y小,则不需要改变原来的堆,因为这个元素比最大的K个数小。如果X比堆顶元素大,那么用X替换堆顶的元素Y。在X替换堆顶元素Y之后,X可能破坏最小堆的结构(每个结点都比它的父亲结点大),需要更新堆来维持堆的性质。更新过程花费的时间复杂度为O(log2K)。

  

图2-1是一个堆,用一个数组h[]表示。每个元素h[i],它的父亲结点是h[i/2],儿子结点是h[2 * i + 1]和h[2 * i + 2]。每新考虑一个数X,需要进行的更新操作伪代码如下:

代码清单2-13

 
 
  1. if(X > h[0])  
  2. {  
  3.     h[0] = X;  
  4.     p = 0;  
  5.     while(p < K)  
  6.     {  
  7.         q = 2 * p + 1;  
  8.         if(q >= K)   
  9.             break;  
  10.         if((q < K - 1) && (h[q + 1] < h[q]))  
  11.             q = q + 1;  
  12.         if(h[q] < h[p])  
  13.         {  
  14.             t = h[p];   
  15.             h[p] = h[q];  
  16.             h[q] = t;  
  17.             p = q;  
  18.         }  
  19.         else 
  20.             break;  
  21.     }  





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值