关闭

最大公约数

标签: 算法平台c
377人阅读 评论(0) 收藏 举报
分类:

最大公约数(greatest common divisor,简写为gcd;或highest common factor,简写为hcf),指某几个整数共有因子中最大的一个。

定义

  如果有一个自然数a能被自然数b整除,则称ab的倍数,ba的约数。几个自然数公有的约数,叫做这几个自然数的公约数。公约数中最大的一个公约数,称为这几个自然数的最大公约数。   例: 246中,2就是246的最大公约数。   早在公元前300年左右,欧几里得就在他的著作《几何原本》中给出了高效的解法——辗转相除法。辗转相除法使用到的原理很聪明也很简单,假设用fx, y)表示xy的最大公约数,取k = x/yb = x%y,则x = ky + b,如果一个数能够同时整除xy,则必能同时整除by;而能够同时整除by的数也必能同时整除xy,即xy的公约数与by的公约数是相同的,其最大公约数也是相同的,则有fx, y= fy, y % x)(y > 0),如此便可把原问题转化为求两个更小数的最大公约数,直到其中一个数为0,剩下的另外一个数就是两者最大的公约数。   例如,1230的公约数有:1236,其中6就是1230的最大公约数。

 

2Stein算法  欧几里德算法是计算两个数最大公约数的传统算法,他无     寻找最大公约数

论从理论还是从效率上都是很好的。但是他有一个致命的缺陷,这个缺陷只有在大素数时才会显现出来。 考虑现在的硬件平台,一般整数最多也就是64位,对于这样的整数,计算两个数之间的模是很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过64位的整数的模,用户也许不得不采用类似于多位数除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。  Stein算法由J. Stein 1961年提出,这个方法也是计算两个数的最大公约数。和欧几里德算法不同的是,Stein算法只有整数的移位和加减法,这对于程序设计者是一个福音。   为了说明Stein算法的正确性,首先必须注意到以下结论:  gcd(a,a) = a,也就是一个数和他自身的公约数是其自身   gcd(ka,kb) = k gcd(a,b),也就是最大公约数运算和倍乘运算可以交换,特殊的,当k=2时,说明两个偶数的最大公约数必然能被2整除

  // c++/java stein 算法

  int gcd(int a,int b){

  if(ab{

  int temp = a;

  a = b;

  b=temp;

  }

  if(0==b)//the base case

  return a;

  if(a%2==0 && b%2 ==0)//a and b are even

  return 2*gcd(a/2,b/2);

  if ( a%2 == 0)// only a is even

  return gcd(a/2,b);

  if ( b%2==0 )// only b is even

  return gcd(a,b/2);

  return gcd((a+b)/2,(a-b)/2);// a and b are odd

  }

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:55130次
    • 积分:735
    • 等级:
    • 排名:千里之外
    • 原创:24篇
    • 转载:1篇
    • 译文:0篇
    • 评论:1条
    最新评论