最大公约数

原创 2011年01月23日 20:14:00

最大公约数(greatest common divisor,简写为gcd;或highest common factor,简写为hcf),指某几个整数共有因子中最大的一个。

定义

  如果有一个自然数a能被自然数b整除,则称ab的倍数,ba的约数。几个自然数公有的约数,叫做这几个自然数的公约数。公约数中最大的一个公约数,称为这几个自然数的最大公约数。   例: 246中,2就是246的最大公约数。   早在公元前300年左右,欧几里得就在他的著作《几何原本》中给出了高效的解法——辗转相除法。辗转相除法使用到的原理很聪明也很简单,假设用fx, y)表示xy的最大公约数,取k = x/yb = x%y,则x = ky + b,如果一个数能够同时整除xy,则必能同时整除by;而能够同时整除by的数也必能同时整除xy,即xy的公约数与by的公约数是相同的,其最大公约数也是相同的,则有fx, y= fy, y % x)(y > 0),如此便可把原问题转化为求两个更小数的最大公约数,直到其中一个数为0,剩下的另外一个数就是两者最大的公约数。   例如,1230的公约数有:1236,其中6就是1230的最大公约数。

 

2Stein算法  欧几里德算法是计算两个数最大公约数的传统算法,他无     寻找最大公约数

论从理论还是从效率上都是很好的。但是他有一个致命的缺陷,这个缺陷只有在大素数时才会显现出来。 考虑现在的硬件平台,一般整数最多也就是64位,对于这样的整数,计算两个数之间的模是很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过64位的整数的模,用户也许不得不采用类似于多位数除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。  Stein算法由J. Stein 1961年提出,这个方法也是计算两个数的最大公约数。和欧几里德算法不同的是,Stein算法只有整数的移位和加减法,这对于程序设计者是一个福音。   为了说明Stein算法的正确性,首先必须注意到以下结论:  gcd(a,a) = a,也就是一个数和他自身的公约数是其自身   gcd(ka,kb) = k gcd(a,b),也就是最大公约数运算和倍乘运算可以交换,特殊的,当k=2时,说明两个偶数的最大公约数必然能被2整除

  // c++/java stein 算法

  int gcd(int a,int b){

  if(ab{

  int temp = a;

  a = b;

  b=temp;

  }

  if(0==b)//the base case

  return a;

  if(a%2==0 && b%2 ==0)//a and b are even

  return 2*gcd(a/2,b/2);

  if ( a%2 == 0)// only a is even

  return gcd(a/2,b);

  if ( b%2==0 )// only b is even

  return gcd(a,b/2);

  return gcd((a+b)/2,(a-b)/2);// a and b are odd

  }

相关文章推荐

最大公约数问题

首先从定义说起,所谓公约数,就是能够同时被若干个整数整除的数。而这些数中最大的那个,就叫做最大公约数(greatest common divisor,简称gcd)。 讲完了定义,下面介绍几种求解最...
  • gw1994
  • gw1994
  • 2017年09月10日 09:41
  • 106

java算法——求最大公约数和最小公倍数

//求最大公约数和最小公倍数 /*求最大公约数方法:辗转相除法 始终用较大数除以较小数,然后用余数代替较大数 整除时的除数就是最大公约数 举例:222 407求最大公约数 222 407(407除...

最大公约数

  • 2016年04月13日 15:21
  • 2KB
  • 下载

最大公约数&&最小公倍数C语言

两个数的最大公约数:最小公倍数 //最大公约数

最大公约数的实例

  • 2015年12月13日 10:41
  • 2.42MB
  • 下载

C语言求最大公约数

  • 2014年10月19日 08:55
  • 165B
  • 下载

经典算法(3)- 用二进制方法求两个整数的最大公约数(GCD)

二进制GCD算法基本原理是:  先用移位的方式对两个数除2,直到两个数不同时为偶数。然后将剩下的偶数(如果有的话)做同样的操作,这样做的原因是如果u和v中u为偶数,v为奇数,则有gcd(u,v)=g...

最大公约数--java

  • 2014年04月01日 16:09
  • 864B
  • 下载

最大公约数

  • 2014年04月25日 11:02
  • 254B
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最大公约数
举报原因:
原因补充:

(最多只允许输入30个字)