VisionMobile:2014年Q1移动开发者经济报告(十三)4.1. 应用即产品 vs 应用即渠道

本文探讨了移动应用领域的两种主要商业模式——应用即产品与应用即渠道,并分析了各种收入模式的优劣,包括合同开发、应用内广告、应用下载、订阅制及电子商务。特别指出电子商务在移动应用中的增长趋势及其对应用经济的重要性。

文章转载只能用于非商业性质,且不能带有虚拟货币、积分、注册等附加条件。转载须注明出处:http://blog.csdn.net/flowingflying/

4.1. 应用即产品 vs 应用即渠道

随着应用经济的成熟,商务模式开始复杂起来,有两个主导的商务模式:

•  应用即产品,通过下载支付,应用内购买,与合同开发,要求直接货币化。

•  应用即渠道,通过跨应用推广、品牌推广与电子商务,目标是非直接性收入。

合同开发对应用经济的贡献为56%,正如我们在应用经济预测报告中发现已超过一半。更重要的是它已经上升为最常见的收入模式,如今有26%的应用开发者以委托方式进行应用开发。随着成千上万的品牌将其数字脚步延伸到移动应用,开发者人才供不应求。他们的中位数收入是$1500每应用/月,比其他直接收入模式要高很多。委托应用比在应用商店销售的风险要低。

应用内广告是低悬的果实,仍是最流行收入模式之一,有26%的应用开发者采用,特别是直接购买需求弱的平台,如Windows Phone和Android。广告收入只对用户基数在百万级的应用时有回报:尽管在明星应用的收入非常高,但是使用广告开发者的收入中位数是$150,在所有收入模式中是最低的。

应用下载(PPD,pay-per-download)在流行度上已经大幅下跌。它在iOS中仍很流行(在将iOS作为主要平台的开发者中有27%采用),但已经跌倒应用内购买(IAP in-app purchases)的后面,有30%的iOS开发者采用应用内购买,而应用下载的中位数收入也同样低于应用内购买。应用内购买模式继续流行和获利,用户在使用中购买应用的体验更为舒适,即用户从应用中获得价值,而不是根据应用自己描述。

收入模式从购买支付转向使用支付,首先在应用中出现,但我们相信将延伸到其他数字货品。早期例子是电子书(读时支付)和实体商品(如车保支付)。我们预期物联网,即数字连接物理实体能力,将是变革的代理,会引发很多实体货物的收入模式从购买支付向使用支付的巨大转变。

"在未来5年会出现新形式和策略,在移动中成为唯一,并会是未来移动内容货币化的主导方式。" Jim Vitek,AppKey的创始人和首席技术官

订购仍是有利可图的收入模式,收入中位数在$750左右,但正如我们在之前报告中强调,这种收入模式只对组织可行,组织可以通过适合的内容和业务来提供吸引人的价值观点,说服用户继续订购。最重要的是,作为非对称竞争,免费业务是对付费业务的釜底抽薪,这是基于订购业务的风险。

将应用转为电子商务的获利

我们的研究发现,电子商务销售作为收入模式的流行度显著提升,从2013年Q3的5%上升到2014年Q1的8%。电子商务增长明确指示出应用生态系统演进超越了应用和数字内容,进入全面成熟的电子商务平台。根据IBM数字分析基准的研究,2013年感恩节和黑色星期五,美国的网上销售25.8%和21.8%分别在智能手机和平板上完成,而移动流量占全部网络流量的39.7%。更重要的事,我们开发者经济2014年Q1调查发现,涉足电子商务的组织收入的中位数是$2750应用/月,在我们跟踪的所有应用收入模式中遥遥领先。

当移动销售年复一年快速地增长,电子商务成为应用经济的重要组成。尽管电子商务收入在2013年只占应用商店销售的11%(见我们的应用经济预测报告),2014年Q1的研究指出增长非常迅猛。应用可电子商务的业务增长是开发者角色从创新者向增值分销商转变的信号。亚马逊以其移动关联API(Mobile Associates API)正在推动这个转变,允许开发者销售实体商品,以及通过应用获取推荐费用,使开发者容易获得新的收入流。Apple和Google可能很快会跟进。

相关链接:我的产业生态链和杂谈文章

【多种改进粒子群算法进行比较】基于启发式算法的深度神经网络卸载策略研究【边缘计算】(Matlab代码实现)内容概要:本文围绕“基于多种改进粒子群算法比较的深度神经网络卸载策略研究”展开,聚焦于边缘计算环境下的计算任务卸载优化问题。通过引入多种改进的粒子群优化(PSO)算法,并与其他启发式算法进行对比,旨在提升深度神经网络模型在资源受限边缘设备上的推理效率与系统性能。文中详细阐述了算法设计、模型构建、优化目标(如延迟、能耗、计算负载均衡)以及在Matlab平台上的代码实现过程,提供了完整的仿真验证与结果分析,展示了不同算法在卸载决策中的表现差异。; 适合人群:具备一定编程基础和优化算法知识,从事边缘计算、人工智能部署、智能优化等相关领域的科研人员及研究生;熟悉Matlab仿真工具的开发者。; 使用场景及目标:①研究边缘计算环境中深度学习模型的任务卸载机制;②对比分析多种改进粒子群算法在复杂优化问题中的性能优劣;③为实际系统中低延迟、高能效的AI推理部署提供算法选型与实现参考; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注算法实现细节与参数设置,通过复现仿真结果深入理解不同启发式算法在卸载策略中的适用性与局限性,同时可拓展至其他智能优化算法的对比研究。
本项目深入探讨了人工智能技术在网络结构解析中的实际运用,重点研究了社交网络环境中潜在连接关系的推断问题。作为网络科学的核心研究方向之一,连接关系推断旨在通过分析现有网络构型来预判可能形成或消失的关联纽带。此项研究对于把握网络演化规律、优化推荐机制以及预判社交网络发展轨迹具有重要价值。 网络结构解析旨在探究复杂系统中各实体间相互关联的模式,其研究范畴涵盖网络构建、特征挖掘、群体划分及动态演变等多个维度。在社交网络场景中,实体代表用户个体,而实体间的关联则映射出用户间的交互行为与社会联系。 网络构型特征是解析过程中的关键要素,主要包括:连接度(节点与其他节点的关联数量)、聚集度(相邻节点间形成连接的概率)、路径距离(节点间最短连通路径)以及中介度(节点在最短路径中的出现频次)。这些特征参数能够有效揭示网络内部结构规律,为连接关系推断提供理论支撑。 在连接关系推断环节,研究重点在于如何基于网络构型特征与节点属性来预判新连接产生的可能性。当前普遍采用的智能算法包括逻辑回归、支持向量机、随机森林及神经网络等。各类算法各具特色:逻辑回归具有计算效率高的优势,但在处理复杂非线性关系时存在局限;支持向量机在小样本数据处理方面表现优异,但需要较高的运算资源;随机森林则擅长处理高维数据,并能有效评估特征重要性。 本研究通过系统对比多种智能算法的预测效能,构建了完整的模型训练、交叉验证、参数优化与性能评估流程。采用曲线下面积、精准度、查全率与调和平均数等量化指标进行综合评判,从而筛选出最适合特定社交网络环境的预测模型。 该项目通过实践演示了如何运用智能计算方法解析社交网络构型特征,并对潜在连接关系进行科学预判,同时提供了多算法性能对比的实证研究案例。对于致力于网络解析、社交网络研究及智能算法应用的专业人士而言,这项研究具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值