VisionMobile:2014年Q3移动开发者经济报告(四):3、原生还是非原生,这是个问题

2014年visionMobile报告显示,Android在移动开发者中占据主导地位,42%的开发者首选Android,相比之下iOS仅占32%。调查还发现,58%的Android开发者使用原生Java,而iOS开发者中使用Objective-C的比例为53%。此外,微软的Windows Phone平台吸引了63%的开发者使用C#进行原生开发。

文章转载只能用于非商业性质,且不能带有虚拟货币、积分、注册等附加条件。转载须注明出处http://blog.csdn.net/flowingflying以及译者@恺风Wei

2014年7月,visionMobile发表了最新一期的移动开发者经济报告 

有多少开发者在创建原生应用?如果不使用原生,他们使用什么语言?我们的调查数据揭开答案。

采用平台的原生语言和框架意味着重要的学习投资,并使开发者难以将应用移植到其他平台上。这是与利用平台全部能力和性能,并提供符合设备用户所期望体验的取舍。相反,采用跨平台,以多平台为目标可显著节省开发成本,使开发者更容易适配新平台。因此,我们使用各平台的原生语言开发者比例来度量开发者的投资和忠诚度。

Android在优先权和忠诚度领先iOS

在全球首选平台中,Android显著领先于iOS(42% vs 32%)。尽管在西方吸引媒体关注的高调创业公司中,首选Android开发并不十分普遍。iOS使用原生Objective-C的开发者比例(53%)少于使用原生Java的Android开发者(58%)。结合着两个量度,有24%的移动开发者首选创建原生的Android应用,而只有17%创建原生iOS应用,就充分的开发者投资而言,Google生态系统有着显著优势。悖论在于,Apple和Google看起来都在进行战略性举措来缩小差距。Apple承认在推出iPhone之前相对少的Objective-C开发者是软肋,并在最初禁止所有的第三方运行环境和跨平台工具,迫使开发者学习Objective-C。放宽这些规则,来跟上应用数量,Apple如今创建了Swift,希望降低进入原生开发的认知障碍。(【注】Swift是苹果于WWDC 2014发布的编程语言,用来写iOS和OS X程序,是具有脚本性质的语言,可视化的应用开发降低了苹果应用的开发门槛,让开发者的效率得到提高)Google采用另一种策略,希望所有人使用Web技术,以便他们可为广告更有效跟踪用户。他们最新的设计和技术在模糊原生应用和web之间的界限,如网站一样索引应用,允许搜索底层链接。新的Material设计让开发者建构的UI有着完全原生的感觉,无论是使用原生还是web技术。(【注】谷歌I/O 014开发者大会上宣布全新的设计语言“Material Design”

微软开发者最为忠诚吗?

Windows Phone开发者在他们自己平台上的投资最多,有63%的开发应用使用原生语言C#。这有多重因素:首先,大部分的应用类型难以跨平台开发并将Windows Phone为目标,因为其UI与其他平台很不同;其次,跨平台游戏使用的Unity(最流行的工具)很可能也是用C#;第三,微软的变化不能应用于从WP7到WP8的平台,这使他们在其他很多方面难以同时针对这两个版本(以及整体装机基数)。

微软工具比微软平台有更高的开发者青睐度。以iOS和Android为首选平台,通过Unity和Xamarin使用C#的开发者和在Windows Phone上建立原生应用的开发者人数几乎一样。对于Xamarin,开发者需要学习目标平台的原生UI框架,因为工具围绕APIs提供薄薄一层封装。尽管附着在喜好的语言,这仍要对平台有显著的投资。首选iOS的开发者中使用C#的是Android的两倍,估计他们中大部分可能只以单平台为目标并使用跨平台工具。这表明微软应加快他们最近的动作,让工具作为好产品去拥抱其他平台。同样的,Satya Nadella的新战略包括微软产品拥抱其他平台,可以让现有的C#开发者继续使用技术而不会错失其他平台显著的规模优势。

黑莓开发者的选择继续放开

由于保留的少量忠诚开发者仍会首选黑莓10,你可能预期原生应用投资高。相反,我们看到的是原生开发者的比例最低,为43%,而web开发者的比例最高,为27%。部分原因是黑莓10一流的web应用,可在某程度上解释。它也是构建web应用的安全网络,即便使用了某些原生平台APIs,如果不能工作,会提供一定的可移植代码库。在优先黑莓10的开发者中,Java是最不流行的首选语言,只有3%,然而,这仍比那些以黑莓10为目标的开发者(非首选)要流行得多。添加Android运行环境是启动应用的低移植成本的可行方式,但并不能为你买到任何的开发者忠诚。这种情况,看看最初成功的Amazon Fire OS和Nokia X平台的命运就很有意思,它们无可避免地从Android的Google版本中分裂。

HTML和原生之间的差距正在拉大。原生SDK们引入新APIs的速度比HTML5跟进的要快。要利用这些新APIs能力,原生是唯一的可行选项。

Conny Svensson,管理架构和移动战略师,CGI,瑞典

 

 

相关链接:我的产业生态链和杂谈文章

内容概要:本文主要介绍了一项基于Pytorch框架搭建神经网络的研究【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)工作,重点实现了DQN算法、优先级采样的DQN算法以及结合人工势场法的DQN算法在避障控制中的应用。研究通过Matlab和Python平台进行仿真与实验,旨在提升智能体在复杂环境中的自主避障能力。文中详细阐述了三种算法的设计思路、网络结构搭建、训练流程及优化策略,并通过对比实验验证了各方法的有效性与性能差异,尤其突出了DQN结合人工势场法在引导智能体快速学习安全路径方面的优势。此外,文档还列举了大量相关的科研方向与技术应用案例,涵盖无人机控制、路径规划、强化学习、电力系统优化等多个领域,展示了广泛的科研服务能力和技术积累。; 适合人群:具备一定Python和深度学习基础,熟悉强化学习基本概念的研究生、科研人员及工程技术人员;对智能控制、机器人避障、无人机路径规划等领域感兴趣的开发者。; 使用场景及目标:① 学习DQN及其改进算法(如优先经验回放)在实际控制系统中的实现方式;② 掌握如何将传统人工势场法与深度强化学习相结合以提升避障性能;③ 借鉴Matlab与Python混合仿真方法,开展智能控制算法的实验验证与对比分析;④ 拓展至无人机、无人车等智能体的自主导航系统设计。; 阅读建议:建议读者结合提供的代码资源,逐步复现实验过程,重点关注神经网络结构设计、奖励函数设定及算法收敛性分析。同时可参考文中列出的其他研究方向,拓展应用场景,提升科研创新能力。
内容【2025最新高维多目标优化】无人机三维路径规划的导航变量的多目标粒子群优化算法NMOPSO研究(Matlab代码实现)概要:本文围绕“2025最新高维多目标优化”主题,重点研究基于城市场景下无人机三维路径规划的导航变量多目标粒子群优化算法NMOPSO,并提供了完整的Matlab代码实现。该研究旨在解决复杂威胁环境下无人机路径规划中的多目标优化问题,兼顾路径安全性、能耗、距离与时效等多个目标,通过改进的粒子群算法实现高效搜索与优化。文中详细阐述了算法设计思路、数学建模过程、适应度函数构建及约束处理机制,并结合三维城市环境进行仿真实验验证其有效性。此外,文档还列举了大量相关科研方向与技术资源,涵盖智能优化算法、路径规划、无人机控制、机器学习、电力系统等多个领域,展示了广泛的科研应用场景和技术支持体系。; 适合人群:具备一定Matlab编程基础,从事无人机路径规划、智能优化算法或自动化控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究高维多目标优化算法在无人机三维路径规划中的应用;②掌握多目标粒子群优化算法(MOPSO/NMOPSO)的设计与实现方法;③复现并改进复杂环境下的无人机协同路径规划模型;④拓展至其他智能优化与控制问题的研究与仿真。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注算法核心模块的实现细节,如种群初始化、非支配排序、拥挤度计算与动态环境建模。同时可参考文中列出的其他研究案例,拓展技术视野,推动算法在实际科研项目中的迁移与应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值