算法笔记--最短路径之dijkstra算法

                                                                                                    1  最短路径算法

在日常生活中,我们如果需要常常往返A地区和B地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。 算法具体的形式包括:

(1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。

(2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。

(3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。

(4)全局最短路径问题:求图中所有的最短路径。

用于解决最短路径问题的算法被称做“最短路径算法”, 有时被简称作“路径算法”。最常用的路径算法有四种:1.Dijkstra(迪杰斯特拉)------------解决单源最短路问题。(贪心的思想)----条件:非负权值。

2.Bellman-Ford(贝尔曼-福特)--------解决单源最短路问题。(逐个遍历每一条边)

3.Floyd(弗洛伊德)---------------解决全源最短路问题。(dp的思想)

4.SPFA(Shortest Path Faster Algorithm)-----------解决单元最短路问题。(队列实现,是bellman-Ford算法的一种改进)

本文(下文)主要研究Dijkstra算法的单源算法。

 

2  Dijkstra算法

      Dijkstra's algorithm, conceived by Dutchcomputer scientistEdsger Dijkstra in 1956 and published in 1959,[1][2] is a graph search algorithm that solves the single-sourceshortest path problem for agraph with nonnegativeedge path costs, producing ashortest path tree. This algorithm is often used inrouting and as a subroutine in other graph algorithms.

     翻译:Dijkstra算法,是由荷兰计算机科学家Edsger Dijkstra算法在1956和1959出版,它是一个图的搜索算法,解决单源最短路径问题的一个非负边路径成本图,产生一个最短路径树。该算法是经常使用的路由和在其他图形算法子程序。

 

2.1 Dijkstra算法

  Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。 

2.2  Dijkstra算法思想

Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2.3  Dijkstra算法具体步骤  

1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。

(2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

(3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

(4)重复步骤(2)和(3)直到所有顶点都包含在S中。

2.4  Dijkstra算法举例说明

如下图,设A为源点,求A到其他各顶点(B、C、D、E、F)的最短路径。线上所标注为相邻线段之间的距离,即权值。(注:此图为随意所画,其相邻顶点间的距离与图中的目视长度不能一一对等)

图一:Dijkstra无向图

Dijkstra最短路径算法

 

算法执行步骤如下表:【注:名为“Dijkstra算法过程”的图】

Dijkstra最短路径算法

 

单源最短路径问题:即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。

一.最短路径的最优子结构性质

   该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。

   假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。

二.Dijkstra算法

   由上述性质可知,如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点。那么(Vi...Vk)也必定是从i到k的最短路径。为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法。譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+matrix[i][j]}。根据这种思路,

假设存在G=<V,E>,源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。

1.从V-U中选择使dist[i]值最小的顶点i,将i加入到U中;

2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[i]+matrix[i][j]})

3.知道U=V,停止。



参考文献

[1]  黄国瑜、叶乃菁,数据结构,清华大学出版社,20018月第1

[2]  最短路径,http://baike.baidu.com/view/349189.htm?func=retitle

[3]  李春葆,数据结构教程,清华大学出版社,20051月第1

[3]  Dijkstra算法,http://baike.baidu.com/view/7839.htm

 

下面主要以HDU-OJ-1874讲解此题。

题目大意概括:输入n和m分别抽象表示n个点,m条边,下面输入m行,每行输入a,b,x。表示a->b之间道路长度x,

输入起点s,终点e。

输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.

代码的实现过程如下(代码中已经详细写明注释,仔细体会代码):

 

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#define N 1000
#define inf 999999
using namespace std;

int map[N][N];// 记录图的两点间路径长度
int dis[N];// 表示当前点到源点的最短路径长度
int vis[N];//visited数组标记某点是否已访问
int s,e;//声明全局变量s起点e终点

void dijkstra(int n)
{
    int i,j;
    int pos;
    for(i=0; i<n; i++)
    {
        dis[i]=map[i][s];//第一次给dis数组赋值
    }
    vis[s]=1;//标记起点已经访问过
    for(i=0; i<n-1; i++)//再运行n-1次,剩下的n-1个点
    {
        pos=s;
        int min=inf;
        for(j=0; j<n; j++)
        {
            if(!vis[j]&&dis[j]<min)
            {
                min=dis[j];//更新最小距离
                pos=j;//并且标记下标
            }
        }
        vis[pos]=1;//标记改点已经访问过
        for(j=0; j<n; j++)
        {
            if(!vis[j]&&dis[j]>dis[pos]+map[j][pos])//更新与j直接相邻顶点的dis值
                dis[j]=dis[pos]+map[j][pos];//这里是此算法更新的关键所在
        }
    }
    if(dis[e]!=inf)
        printf("%d\n",dis[e]);//打印出源点到最后一个顶点的最短路径长度;
    else
        printf("-1\n");//否则打印-1;
}
int main()
{
    int n,m;
    int i,j;
    int a,b,x;//声明变量
    while(scanf("%d %d",&n,&m)!=EOF)//循环输入数据n和m的值
    {
        memset(vis,0,sizeof(vis));//清空vis数组
        for(i=0; i<n; i++)
        {
            for(j=0; j<n; j++)
            {
                map[i][j]=inf;//所有权值初始化为最大,代表地图上的点没有连线
            }
            map[i][i]=0;//自身到自身的距离权值为0
        }
        for(i=0; i<m; i++)
        {
            scanf("%d %d %d",&a,&b,&x);
            if(map[a][b]>x)//更新
                map[a][b]=map[b][a]=x;//这样表示无向图
        }
        scanf("%d %d",&s,&e);//输入起点和终点
        dijkstra(n);
    }
    return 0;
}


 

以上重点阐释了最短路径dijkstra算法的实现过程。

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值