关闭

[置顶] 关于我的CSDN博客的一些要说的话

写博客的目的 其实最早开始写博客就是为了把自己的学习笔记和错误日志保存到线上,顺便可以拿拿赚点C币,换换资源分之类的 后来慢慢感觉其实有些笔记可以写得更好一些,这样既有利于我个人的使用,或许还能帮助到其他人呢?也正是第一次有了这个想法,然后慢慢的开始筹划写博客,再然后也筹划过个人的博客网站.最后慢慢的变得对博客越来越上心. 虽然后来也曾经因为觉得自己的博客缺乏质量(在学web的时候),做了太多重复性...
阅读(440) 评论(0)

5.2 TensorFlow:模型的加载,存储,实例

背景之前已经写过TensorFlow图与模型的加载与存储了,写的很详细,但是或闻有人没看懂,所以在附上一个关于模型加载与存储的例子,.其中模型很巧妙,比之前numpy写一大堆简单多了,这样有利于把主要注意力放在模型的加载与存储上.解析创建保存文件的类:saver = tf.train.Saver()saver = tf.train.Saver() ,即为常见保存模型...
阅读(1060) 评论(2)

卷积神经网络(cnn)的体系结构

译者注,本篇文章对卷积神经网络有很好的讲解,其内容有相较原文有部分增加与补充,阅读原文请点击这里 原作者的文章其实更利于读者对卷积本身的理解,但是实际上作者对卷积的现实意义的理解并没有解释的十分清楚,甚至可能不利于堵着的理解,也正因为如此我在翻译过程中可能对原文进行了比较大的改动,希望这对你有帮助. 实际上上卷积神经网络是来自神经学的研究,其计算过程实际上模拟了视觉神经系统的运算过程.这一部分内容其翻阅其他文章. TensorFlow中该部分的内容请参考我的博客:卷积函数 和 池化函数,...
阅读(378) 评论(0)

Python ML环境搭建与学习资料推荐

python 下载anconda 更新pip源 参考文章一: Python类库三两事 - 一次解决:http://blog.csdn.net/FontThrone/article/details/76560698 参考文章二:Anaconda多环境多版本python配置指导http://blog.csdn.net/fontthrone/article/details/76560293 IDE 下...
阅读(127) 评论(0)

TypeError: Can not convert a float32 into a Tensor or Operation.

错误TypeError: Can not convert a float32 into a Tensor or Operation. # 类型错误:不能将一个浮动32转换为一个张量或操作。TypeError: Fetch argument 2.3025854 has invalid type , must be a string or Tensor. (...
阅读(96) 评论(0)

脚本:获取CSDN文章的访问量

目标 获取所有文章名,链接,阅读人数,评论数 以适合pandas读取的格式存储之 分析页面跳转首页:http://blog.csdn.net/fontthrone?viewmode=list 第二页:http://blog.csdn.net/FontThrone/article/list/2 三四页以此类推 根据第二三四页的格式尝试http://blog.csdn.net/FontThrone...
阅读(89) 评论(0)

Python中的argparse模块

简介argparse是python用于解析命令行参数和选项的标准模块,用于代替已经过时的optparse模块。argparse模块的作用是用于解析命令行参数. 如果你想详细的了解它的功能.建议阅读这个,或者这个 本篇文章只对其基本功能进行介绍,并对TensorFlow的examples中argarse使用进行详细的介绍功能原本的功能是命令行解析模块使用argparse的第一步就是创建一个解析器对...
阅读(127) 评论(0)

7.3 TensorFlow笔记(基础篇):加载数据之从队列中读取

前言整体步骤在TensorFlow中进行模型训练时,在官网给出的三种读取方式,中最好的文件读取方式就是将利用队列进行文件读取,而且步骤有两步: 1. 把样本数据写入TFRecords二进制文件 2. 从队列中读取数据读取TFRecords文件步骤使用队列读取数TFRecords 文件 数据的步骤 1. 创建张量,从二进制文件读取一个样本数据 2. 创建张量,从二进制文件随机读取一个mi...
阅读(135) 评论(0)

7.1 TensorFlow笔记(基础篇):加载数据之预加载数据与填充数据

TensorFlow加载数据TensorFlow官方共给出三种加载数据的方式: 1. 预加载数据 2. 填充数据 预加载数据的缺点: 将数据直接嵌在数据流图中,当训练数据较大时,很消耗内存.填充的方式也有数据量大,消耗内存高的缺点,并且数据类型的转换等中间环节增加了不少开销(之前的笔记示例中主要使用的这两种方式).最好用第三种方法,在图中定义好文件读取的方法,让Tensorflow 自己从...
阅读(120) 评论(0)

7.2 TensorFlow笔记(基础篇): 生成TFRecords文件

前言在TensorFlow中进行模型训练时,在官网给出的三种读取方式,中最好的文件读取方式就是将利用队列进行文件读取,而且步骤有两步: 1. 把样本数据写入TFRecords二进制文件 2. 从队列中读取TFRecords二进制文件,能够更好的利用内存,更方便的移动和复制,并且不需要单独的标记文件 下面官网给出的,对mnist文件进行操作的code,具体代码请参考:tensorflow-m...
阅读(169) 评论(0)

6.1 Tensorflow笔记(基础篇):队列与线程

前言在Tensorflow的实际应用中,队列与线程是必不可少,主要应用于数据的加载等,不同的情况下使用不同的队列,主线程与其他线程异步进行数据的训练与读取,所以队列与线程的知识也是Tensorflow必须要学会的重要知识 另一方面,Tensorflow作为符号编程框架,在构图后,加载数据有三种方式,预加载与填充数据都存在,数据量大消耗内存等情况的出现.使用第三种方式文件读取避免了前两者的缺点,但是...
阅读(157) 评论(0)

5.1 Tensorflow:图与模型的加载与存储

前言自己学Tensorflow,现在看的书是《TensorFlow技术解析与实战》,不得不说这书前面的部分有点坑,后面的还不清楚.图与模型的加载写的不清楚,书上的代码还不能运行=- =,真是BI….咳咳.之后还是开始了查文档,翻博客的填坑之旅 ,以下为学习总结.快速应用存储与加载,简单示例# 一般而言我们是构建模型之后,session运行,但是这次不同之处在于我们是构件好之后存储了模型 # 然后在...
阅读(223) 评论(2)

3.1 Tensorflow: 批标准化(Batch Normalization)

BN 简介背景批标准化(Batch Normalization )简称BN算法,是为了克服神经网络层数加深导致难以训练而诞生的一个算法。根据ICS理论,当训练集的样本数据和目标样本集分布不一致的时候,训练得到的模型无法很好的泛化。而在神经网络中,每一层的输入在经过层内操作之后必然会导致与原来对应的输入信号分布不同,,并且前层神经网络的增加会被后面的神经网络不对的累积放大。这个问题的一个解决思路就是根...
阅读(182) 评论(0)

4.2 Tensorflow笔记:池化函数

池化卷积神经网络的结构其中,input为输入,conv为卷积层,由卷积核构成,pool为池层,由池化函数构成最后是全连接层与输出层,其负责对卷积层提取的特征进行处理以获得我们需要的结果池化函数的意义池化层的输入一般来源于上一个卷积层,主要作用是提供了很强的鲁棒性(例如max-pooling是取一小块区域中的最大值,此时若此区域中的其他值略有变化,或者图像稍有平移,pooling后的结果仍不变),并且...
阅读(179) 评论(0)

4.1 Tensorflow:卷积函数

卷积卷积神经网络的结构其中,input为输入,conv为卷积层,由卷积核构成,pool为池层,由池化函数构成最后是全连接层与输出层,其负责对卷积层提取的特征进行处理以获得我们需要的结果卷积函数卷积函数是本篇文章要讲解的内容,在TensorFlow中卷积函数输入的参数其输入参数 主要有input, filter, strides, padding, use_cudnn_on_gpu=None,dat...
阅读(177) 评论(0)

1.1 Tensorflow笔记(基础篇): 图与会话,变量

图与会话import tensorflow as tf import os# 取消打印 cpu,gpu选择等的各种警告 # 设置TF_CPP_MIN_LOG_LEVEL 的等级,1.1.0以后设置2后 只不显示警告,之前需要设置3,但设置3不利于调试 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import time# 创建一个常量 op, 产生一个 1x2 矩...
阅读(176) 评论(0)

Python类库三两事 - 一次解决

Python类库安装常见问题 没有类库 下载更新缓慢 类库太多,一次下载很慢 多版本运行问题 常见问题解决方案 关于类库找不到问: 类库找不到怎么办? 答: 下载whl文件,安装.链接点这里问:whl文件怎么安装 答一: cmd命令行安装,将文件放在命令行的路径下,pip install whl文件名 即可 答二:pip install 路径+whl文件名 亦可 答三:检查 pip list...
阅读(220) 评论(2)

Anaconda多环境多版本python配置指导

Anaconda多环境多版本python配置指导: http://www.jianshu.com/p/d2e15200ee9b 原博客是翻译的官方文档,再加上自己的部分内容,官方原文地址:http://conda.pydata.org/docs/test-drive.html conda测试指南 在开始这个conda测试之前,你应该已经下载并安装好了Anaconda或者Minic...
阅读(154) 评论(0)

NLTK 词频统计(一) 词频统计,绘图,词性标注

内容简介 代码一,笔记简略版本 代码二,词频统计与pandas集合,分词词性提取与词频统计结合 代码一import FontCN_NLPtools as fts引用的是我自己写的一个类,是对我常用的一些方法的封装,code已经上传# 解决乱码问题 import matplotlib as mpl mpl.rcParams[u'font.sans-serif'] = [u'KaiTi'] mpl.rcParams[u...
阅读(718) 评论(0)

使用NLPIR 进行中文分词并标注词性

背景在许多时候为了更好的解析文本,我们不仅仅需要将文本分词,去停这么简单,除了获取关键词与新词汇以外,我们还需要对获取每个粒度的其他信息,比如词性标注,在python中NLPIR就可以很好的完成这个任务,如果你没有NLPIR那么你可以参考这篇文章NLPIR快速搭建,或者直接下载我已经准备好的汉语自然语言处理文件包NLP源码集合代码,亦是我的笔记# - * - coding: utf - 8 -*-...
阅读(3242) 评论(0)

封装汉语自然语言处理中的常用方法(附代码:生成中文词云)

前叙该文章写作共花费二十分钟,阅读只需要七分钟左右,读完该文章后,你将学会使用少量代码,将中文小说,中文新闻,或者其他任意一段中文文本生成词云图背景在进行汉语自然语言处理时候,经常使用的几个方法,分词,清除停用词,以及获取新词,为了方便使用我们将其封装. 这样我们就可以通过一行简单的代码获取清除停用词并和英语一样分词完毕,并以空格分割的汉语字符串,或者还可以获得其他功能.至于之所以加上这个例子,是...
阅读(2098) 评论(0)
90条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:223332次
    • 积分:2536
    • 等级:
    • 排名:第14515名
    • 原创:71篇
    • 转载:17篇
    • 译文:2篇
    • 评论:20条
    博客专栏