- 博客(79)
- 资源 (1)
- 收藏
- 关注
原创 Python进阶1-10(目前只有1,会更新的)
bbox:区域的外接矩形框,格式是 (min_row, min_col, max_row, max_col)。equivalent_diameter:区域的等效直径(与面积相同的圆的直径)。eccentricity:区域的偏心率(椭圆拟合后的离心率,范围 0–1)。major_axis_length:区域拟合椭圆的长轴长度。minor_axis_length:区域拟合椭圆的短轴长度。convex_image:区域的凸包图像(局部二值图)。mean_intensity:区域里像素的平均值。
2025-09-21 10:25:05
429
原创 点积、叉积、矩阵行列式详解、线性相关与线性无关、矩阵的秩、矩阵可逆与不可逆详解
本文系统介绍了向量运算与线性代数中的核心概念。首先阐述了点积的定义、几何意义(投影关系)及其在相似度度量中的应用;其次讲解了叉积的计算方法及其几何解释(垂直于原向量平面的新向量)。随后将行列式与几何变换相联系,指出行列式的绝对值对应线性变换后的面积/体积缩放因子。最后详细解释了线性相关/无关的概念,包括几何直观、代数判定方法及其在机器学习中的重要性。全文通过几何与代数双重视角,揭示了这些数学工具的本质内涵及其实际应用价值。
2025-09-08 09:02:25
1669
原创 P8683 [蓝桥杯 2019 省 B] 后缀表达式
我上面巴拉巴拉一大堆,核心意思就是,只要有一个负号,你就能通过加括号的方式,创造出1~n+m个负号,但因为至少会存在一个负号,所以至少会减去一个数,所以需要减去一个最小的数,这样可以让结果更大一点。除了减去的这个最小的数,其他的数都可以被任意构造成加法和减法,因此如果是负数,就减去这个负数,如果是正数,就加上这个正数,这样结果最大。如果给了至少一个负号,那你就可以构造多个负号,为啥呢,因为你可以加括号,从中缀表达式(正常的,平时数学上学的表达式)转到后缀表达式会去掉括号,就是说后缀表达式没有括号。
2025-03-10 20:47:18
550
4
原创 AlexNet论文代码阅读
训练了一个大型的深度卷积神经网络,将ImageNet LSVRC-2010竞赛中的120万张高分辨率图像分类到1000个不同的类别中。在测试数据上取得了37.5%的top-1错误率(top-1错误率是指其正确标签不是模型认为最可能的标签的比例)和17.0%的top-5错误率(其正确标签不是模型认为最可能的五个标签中的比例)。该神经网络包含6000万个参数和65万个神经元,由五个卷积层(其中一些后面跟着最大池化层)和三个全连接层组成,最后是一个1000路softmax。
2025-02-02 22:08:40
1061
原创 下载cuda11.2+cudnn8.1+tensorflow-gpu2.5
下载前请先安装显卡驱动,去显卡官网找对应的驱动,英伟达4060就去英伟达官网找4060的驱动。
2024-12-31 15:41:21
902
原创 本地运行环境工具UPUPWANK(win)和Navicat数据库管理工具
本地运行环境工具UPUPWANK(win)和Navicat数据库管理工具
2024-03-23 17:18:39
1133
原创 阿里云服务器的设置与购买、宝塔面板的使用、域名绑定、网站站点访问
阿里云服务器的购买教学,以及绑定宝塔面板,宝塔面板的使用,域名的购买,域名的绑定,网站站点的创建,网站站点的访问与修改
2024-03-22 20:14:48
2939
2
原创 eric7安装报错
Sorry, please install QScintilla2 andits PyQt6 wrapper.Error: DLL load failed while importing Qsci: 找不到指定的程序。
2024-03-20 11:02:06
626
转载 Vision Transformer(ViT)
它是目前图片分类最好的模型,超越了最好的CNN。图片分类的意思是自动判断这张图片是什么。如果给定这个图片,神经网络应当判断这张图片是狗。把图片输入神经网络中,神经网络输出分类结果p,p的每个元素对应一个类别。如果数据集中一共有8个类别,那么p是八维的向量。(神经网络有40%的信心认定图片为狗)CNN中ResNet在图片分类结果很好。Vision Transformer是最近提出的,2021年正式发表。
2023-09-18 14:55:49
609
转载 transformer概述
无论是在机器学习还是深度学习中,我们做特征处理的时候都叫Feature Scaling,Feature Scaling就是为了消除量纲的影响,让模型收敛的更快。BN理解的重点在于针对整个batch中的样本在同一维度特征在做处理。
2023-09-18 13:53:33
455
转载 语义分割概述
总结就是,通过训练,先进行图片的预处理,然后放入网络进行训练。比如上面的这张图片,被翻译成了包含car,house,people,road,groud,lamppost等几个类。测试结果分为两种,一种是根据常用指标分数衡量网络性能,另一种是将网络的预测结果以图片的形式保存下来,直观感受分割的精确程度。语义分割有较多的方法,大致可以分成两类,一类是传统的方法,一类是基于深度学习的方法。: PA的变体,每个类内正确分类的像素数量和该类的所有像素点数(Ground truth)的比值,之后求所有类的平均。
2023-09-16 15:00:08
512
原创 动手学深度学习Pytorch 4.4练习
如果有一个 x大于 1,那么这个很大的 i就会带来很大的值,优化的时候可能会带来很大的梯度值。可以,把多项式问题,用matlab的str2sym表示出来,再用solve求解。从图中看,1-100的阶数的多项式都不能把训练损失减少到0。这里的值没有到0,只是图上看着到了。
2023-08-09 18:40:47
384
原创 计算机网络基础第五章
一、传输层概述二、UDP协议三、TCP协议3.1 TCP协议特点3.2 TCP报文段首部格式3.3 TCP连接管理3.4 TCP可靠传输3.5 TCP流量控制3.6 TCP拥塞控制3.6.1 慢开始和拥塞窗口3.6.2 快重传和快恢复四、第五章总结
2023-07-16 20:59:09
113
原创 计算机网络基础第四章
(1)因特网规模很大(2)许多单位不想让外界知道自己的路由选择协议,但还想连入因特网自治系统AS:在单一的技术管理下的一组路由器,而这些路由器使用一种AS内部的路由选择协议和共同的度量以确定分组在该AS内的路由,同时还使用一种AS之间的路由协议以确定在AS之间的路由。一个AS内的所有网络都属于一个行政单位来管辖,一个自治系统的所有路由器在本自治系统内都必须连通。路由器对目的地址是私有IP地址的数据报一律不进行转发。网络地址转换NET(Network Address Translation):在。
2023-07-16 16:43:21
428
原创 计算机网络基础第三章
结点:主机、路由器链路:网络中两个结点之间的物理通道,链路的传输介质主要有双绞线、光纤和微波。分为有线链路、无线链路数据链路:网络中两个结点之间的逻辑通道,把实现控制数据传输协议的硬件和软件加到链路上就构成了数据链路帧:链路层的协议数据单元,封装网络层数据报。数据链路层负责通过一条链路从一个结点向另一个物理链路直接相连的相邻结点传送数据报。数据链路层在物理层提供服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻结点的目标机网络层。其主要作用是加强物理层传输原始比特流的功能。
2023-07-14 10:00:22
660
原创 计算机网络基础第二章
物理层解决如何在连接各种计算机的传输媒体上传输数据比特流,而不是指具体的传输媒体。物理层主要任务:确定与传输媒体接口有关的一些特性 ——>定义标准通信的目的是传送消息(消息:语音、文字、图像、视频等)。数据data:传送信息的实体,通常是有意义的符号序列(数据通信指在不同计算机之间传输表示信息的二进制数0、1序列的过程)信号:数据的电气/电磁的表现,是数据在传输过程中的存在形式数字信号/离散信号:代表消息的参数的取值是离散的。模拟信号/连续信号:代表消息的参数的取值是连续的。信源:产生和发送数据的
2023-07-12 14:20:49
1052
原创 计算机网络基础第一章
硬件、软件、协议(一系列规则和约定的集合)要实现不同厂商的硬、软件之间相互连通,必须遵从统一的标准。分类法定标准:由权威机构制定的正式的、合法的标准。OSI事实标准: 某些公司的产品在竞争中占据了主流,时间长了,这些产品中的协议和技术就成了标准。TCP/IPRFC——因特网标准的形式。1)因特网草案:这个阶段还不是RFC文档2)建议标准:从这个阶段开始成为RFC文档(放在互联网上进行评论与修改)3)草案标准(2011年取消了)4)因特网标准(IETF、IAB进行审核)速率即数据率或称。
2023-07-11 16:11:12
808
转载 欧式距离与曼哈顿距离
欧几里得度量是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离。dxyx1−y12x2−y22⋯xn−yn2∑i1nxi−yi2dxyx1−y12x2−y22⋯xn−yn2∑i1nxi−yi2欧式距离有一个局限是度量两点之间的直线距离。但实际上,在现实世界中,我们从原点到目标点。曼哈顿距离加入了一些这方面的考虑。两个n维向量。
2023-07-01 10:22:19
453
原创 软件自动化测试
Mock测试是一种常见的测试方法,通常在执行测试的时候,测试代码往往需要与一些真实对象进行交互,又或者被测代码的执行需要依赖真实对象的功能。此时,我们可以使用一个轻量级的、可控制的Mock对象来取代真实对象,模拟真实对象的行为和功能,从而方便我们测试。jMock便是这种方法的一种实现。jMock是一个利用Mock对象来测试Java代码的轻量级测试工具。说明:代表期望的方法调用次数,jMock提供了表达方法调用次数的多种手段方法含义One期望调用执行一次且仅一次期望调用执行n次。
2023-06-12 10:26:27
1373
2
GatewayWorker源码包
2024-03-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅