Zabbix server is not running alert on CentOS 6(同时解决SMTP发送失败问题)

解决Zabbix服务器警报

原创地址:http://www.sysads.co.uk/2013/11/zabbix-server-running-alert/


In some occasions after installing Zabbix server, the following message gets displayed at the home screen:

Zabbix server is not running: the information displayed may not be current

zabbix-alert-01a

This issue is related to the Linux Security Module (SELinux) which is a mandatory access control (MAC) security mechanism implemented in the kernel.

To clear the alert, follow the steps outlined below:

- First confirm that SELinux is causing this by running the following command from within Linux console:

tail -f /var/log/audit/audit.log |grep -i avc

- You should see the following lines:

type=AVC msg=audit(1383850274.731:32113): avc:  denied  { name_connect } for  pid=2060 comm=”httpd” dest=10051 scontext=unconfined_u:system_r:httpd_t:s0 tcontext=system_u:object_r:port_t:s0 tclass=tcp_socket

The best and recommended option to fixing this is to add a policy to allow the connection

- Run the command “getsebool -a“. Locate the following line which should give you a value ‘–> off

httpd_can_network_connect --> off

- Run the command to turn it on

setsebool httpd_can_network_connect on

- Now run the command “getsebool httpd_can_network_connect“. The result should now indicate that the policy is now set to ON

setsebool -P httpd_can_network_connect on

Now the Zabbix alert message should disappear and also the “Zabbix server is running” value should now show ‘Yes

zabbix-alert-01

做完以上配置后,重启HTTPD服务后测试,如果仍不可发送SMTP,追加setsebool -P httpd_can_sendmail=1命令,然后重启HTTPD服务后即可。

内容概要:本文提出了一种基于融合鱼鹰算法和柯西变异的改进麻雀优化算法(OCSSA),用于优化变分模态分解(VMD)的参数,进而结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)构建OCSSA-VMD-CNN-BILSTM模型,实现对轴承故障的高【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)精度诊断。研究采用西储大学公开的轴承故障数据集进行实验验证,通过优化VMD的模态数和惩罚因子,有效提升了信号分解的准确性与稳定性,随后利用CNN提取故障特征,BiLSTM捕捉时间序列的深层依赖关系,最终实现故障类型的智能识别。该方法在提升故障诊断精度与鲁棒性方面表现出优越性能。; 适合人群:具备一定信号处理、机器学习基础,从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决传统VMD参数依赖人工经验选取的问题,实现参数自适应优化;②提升复杂工况下滚动轴承早期故障的识别准确率;③为智能制造与预测性维护提供可靠的技术支持。; 阅读建议:建议读者结合Matlab代码实现过程,深入理解OCSSA优化机制、VMD信号分解流程以及CNN-BiLSTM网络架构的设计逻辑,重点关注参数优化与故障分类的联动关系,并可通过更换数据集进一步验证模型泛化能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值