容斥原理 和 欧拉函数

概率论中,对于概率空间\scriptstyle(\Omega,\mathcal{F},\mathbb{P})中的事件A1,……,An,当n = 2时容斥原理的公式为:

\mathbb{P}(A_1\cup A_2)=\mathbb{P}(A_1)+\mathbb{P}(A_2)-\mathbb{P}(A_1\cap A_2),

n = 3时,公式为:

\begin{align}\mathbb{P}(A_1\cup A_2\cup A_3)&=\mathbb{P}(A_1)+\mathbb{P}(A_2)+\mathbb{P}(A_3)\\&\qquad-\mathbb{P}(A_1\cap A_2)-\mathbb{P}(A_1\cap A_3)-\mathbb{P}(A_2\cap A_3)\\&\qquad+\mathbb{P}(A_1\cap A_2\cap A_3)\end{align}

一般地:

\begin{align}\mathbb{P}\biggl(\bigcup_{i=1}^n A_i\biggr) & {} =\sum_{i=1}^n \mathbb{P}(A_i)-\sum_{i,j\,:\,i<j}\mathbb{P}(A_i\cap A_j) \\&\qquad+\sum_{i,j,k\,:\,i<j<k}\mathbb{P}(A_i\cap A_j\cap A_k)-\ \cdots\ +(-1)^{n-1}\, \mathbb{P}\biggl(\bigcap_{i=1}^n A_i\biggr),\end{align}


正数n的唯一素因子分解式=p1^a1 * p2^a2 * p3^a3 ……* pk^ak 。求1,2,3,…… n中与n互素的个数。

φ(n)=n(1  - 1/p1) (1 - 1/p2) (1 - 1/p3) (1 - 1/p4)…..(1 - 1/pk) , 其中p1, p2……pk为n的所有质因数

int euler_phi(int n)
{
    int m=(int)sqrt(n+0.5);
    int ans=n;
    for(int i=2;i<=m;i++)
    {
        if(n%i==0)
        {
            ans = ans / i * (i-1);
            while(n % i == 0)
                n/=i;
        }
    }
     if(n>1)
            ans = ans / n * (n-1);
    return ans;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值