HDU :
2588:欧拉函数于gcd
1286:
4135:
2841:
2824:
1796:
1695:
3501:欧拉函数扩展
POJ :
1142:
2407:
3090:
总结:
容斥原理:求n在(1,m)中有几个互质的数。
基本步骤:
1.求n的质因子
2.求质因子的组合(奇正,偶负)//队列法,位运算法
3.求和得(1,m)中于质因子有关的数的数量
4.m - f(m);
队列法:
int k;//质因子数量
int e[1000];//存放质因子
int p[10000];//存放欧拉函数
void ff(int n)//求质因子
{
k = 0;
for(int i = 2;i * i <= n;i++)
{
if(n % i == 0)
{
e[k++] = i;
while(n % i == 0){n /= i;}
}
}
if(n > 1) e[k++] = n;
}
int f(int m)
{
int top = 1;
p[0] = -1;
for(int i = 0;i < k;i++)//求组合
{
int t = top;
for(int j = 0;j < top;j++)
{
p[top++] = p[j] * (-1) * e[i];
}
}
int sum = 0;
for(int i = 1;i < top;i++)//求和
{
sum += m / p[i];
}
return sum;
}
位运算法:复杂度=1<<k (k=n的质因子数)
int k;//质因子数量
int e[1000];//存放质因子
void ff(int n)//求质因子
{
k = 0;
for(int i = 2;i * i <= n;i++)
{
if(n % i == 0)
{
e[k++] = i;
while(n % i == 0){n /= i;}
}
}
if(n > 1) e[k++] = n;
}
int f(int m)
{
int res;
int sum = 0;
int use;//记录使用因子的个数
for(int i = 1; i < 1<<k; i++)
{
res = 1; use = 0;
for(j = 0; j < k; j++)
{
if(i & (1<<j))
{
use++;
res *= e[j];
}
}
if(use & 1) sum += m / res;//奇加偶减
else sum -= m / res;
}
return sum;
}
欧拉函数:求n在(1,n)中有几个互质的数。
欧拉函数扩展:小于或者等于n的数中(n > 1),与n互
质的数总和 = euler[n] * n / 2。
重要应用于gcd结合!!
基本公式:a[n]=n * (1 - 1 / pi) * (1 - 1 / pj)...(pi,j为n的质因子)。
代码1:求单个n的欧拉值。//适用于n大,n少。
int f(int n)
{
int sum = n;
for(int i = 2;i * i <= n;i++)
{
if(n % i == 0)
{
sum = sum / i * (i - 1);
n /= i;
while(n % i == 0){n /= i;}
}
}
if(n > 1) sum = sum / n * (n - 1);
return sum;
}
代码2:求(1,n)中所有的欧拉值a[i]。//适用于n小,n多。
void f(int n)
{
memset(p,0,sizeof(p));
p[1] = 1;
for(int i = 2;i <= n;i++)
{
if(!p[i])
{
for(int j = i;j <= n;j += i)
{
if(!p[j]) p[j] = j;
p[j] = p[j] / i * (i - 1);
}
}
}
}