[转]如何学习《离散数学》?

转载 2007年10月08日 16:41:00

   首 先要明确的是,由于《离散数学》是一门数学课,且是由几个数学分支综合在一起的,内容繁多,非常抽象,因此即使是数学系的学生学起来都会倍感困难,对计算 科学专业的学生来说就更是如此。大家普遍反映这是大学四年最难学的一门课之一。但鉴于《离散数学》在计算科学中的重要性,这是一门必须牢牢掌握的课程。既 然如此,在学习《离散数学》时,大家最应该牢记的是唐诗“熟读唐诗三百首,不会做诗也会吟。”学习过程是一个扎扎实实积累的过程,不能打马虎眼离散数学是理论性较强的学科,学习离散数学的关键是对离散数学(集合论、数理逻辑和图论)有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。

《离散数学》的特点是:1知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。2、方法性强:离散数学的特点是抽象思维能力的要求较高。通过对它的学习,能大大提高我们本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。《离 散数学》的证明题多,不同的题型会需要不同的证明方法(如直接证明法、反证法、归纳法、构造性证明法),同一个题也可能有几种方法。但是《离散数学》证明 题的方法性是很强的,如果知道一道题用什么方法讲明,则很容易可以证出来,否则就会事倍功半。因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多 探讨几种证明方法,从而学会熟练运用这些证明方法。同时要善于总结,

在学习《离 散数学》的过程,对概念的理解是学习的重中之重。一般来说,由于这些概念(定义)非常抽象(学习《线性代数》时会有这样的经历),初学者往往不能在脑海中 建立起它们与现实世界中客观事物的联系。这往往是《离散数学》学习过程中初学者要面临的第一个困难,他们觉得不容易进入学习的状态。因此一开始必须准确、 全面、完整地记住并理解所有的定义和定理。具体做法是在进行完一章的学习后,用专门的时间对该章包括的定义与定理实施强记。只有这样才可能本课程的抽象能 够适应,并为后续学习打下良好的基础。

学数学就要做数学,《离散数学》的学习也不例外。学习数学不仅限于学习数学知识,更重要的还在于学习数学思维方法。要做到这一点,学习者将要面临的第二个困难是需要花费大量的时间做课后习题。但是切记离散数学的题目数量自然是无穷无尽的,但题目的种类却很有限。 尤其是在命题证明的过程中,最重要的是要掌握证明的思路和方法。解离散数学的题,方法是非常重要的,如果拿到一道题,立即能够看出它所属的类型及关联的知 识点,就不难选用正确的方法将其解决,反之则事倍功半。例如在命题逻辑部分,无非是这么几种题目:将自然语言表述的命题符号化,等价命题的相互转化(包括 化为主合取范式与主析取范式),以给出的若干命题为前提进行推理和证明。相应的对策也马上就可以提出来。以推理题为例,主要是利用PT规则,加上蕴涵和等价公式表,由给定的前提出发进行推演,或根据题目特点采用真值表法、CP规则和反证法。由此可见,在平常学习中,要善于总结和归纳,仔细体会题目类型和此类题目的解题套路。如此多作练习,则即使遇到比较陌生的题也可以较快地领悟其本质,从而轻松解出。

因此,只要肯下功夫,人人都能有扎实的基础,拥有足够的数学知识,特别是能大大提高本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。

 

相关文章推荐

《离散数学》学习笔记一之命题逻辑

命题逻辑     命题:

离散数学学习笔记 基本逻辑 01

命题逻辑逻辑的基本成分是命题,命题是一个或真或假的陈述语句,即一个陈述事实的句子,但不能既真又假。 涉及命题的逻辑领域称为命题演算或命题逻辑。逻辑运算符非令 pp 为一命题,则 pp 的否定表示为 ...

离散数学及其应用学习笔记——主定理(Master Theorem)的证明

先贴出两个初中数学公式 使用换根公式和对数倒数性质可以得出这样的结论:alogbn=nlogbaa^{log_bn}=n^{log_ba} 等比数列求和公式:Sn=anq−a1q−1 S_n=\f...

离散数学学习笔记1

第一章 基础:逻辑、集合和函数 本章复习离散数学的基础。有三个主要内容:逻辑、集合和函数。逻辑规则给出数学语句的准确含义。例如,逻辑规则告诉我们下列语句的含义:“存在一个大于100且是2的幂的整数”...

《离散数学及其应用》学习(上)

一.逻辑和证明,集合,函数 1.逻辑难题 http://www.2144.cn/html/88/6426/ ...

如何学习离散数学和在计算机科学中应用

离散数学的定义及其在各学科领域的重要作用。离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。它在各学科领域,特别在计算机科学与技术...
  • utimes
  • utimes
  • 2014年12月18日 20:45
  • 2765

离散数学学习指导与习题解析

  • 2009年04月13日 18:49
  • 3.94MB
  • 下载

离散数学 学习指导与习题解答

  • 2008年09月26日 12:48
  • 7.18MB
  • 下载

<<离散数学上机实验>>集合上机实验

一:真值计算 主要考虑计算机如何表示逻辑演绎,且,或,非,蕴含,双条件。 从键盘输入两个命题P和Q的真值,求它们的合取、析取、条件和双条件的真值。用C语言实现。 二:集合的运算 集合的交,并,...

离散数学本科课程学习资料

  • 2008年10月26日 00:14
  • 909KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[转]如何学习《离散数学》?
举报原因:
原因补充:

(最多只允许输入30个字)