[转]如何学习《离散数学》?

转载 2007年10月08日 16:41:00

   首 先要明确的是,由于《离散数学》是一门数学课,且是由几个数学分支综合在一起的,内容繁多,非常抽象,因此即使是数学系的学生学起来都会倍感困难,对计算 科学专业的学生来说就更是如此。大家普遍反映这是大学四年最难学的一门课之一。但鉴于《离散数学》在计算科学中的重要性,这是一门必须牢牢掌握的课程。既 然如此,在学习《离散数学》时,大家最应该牢记的是唐诗“熟读唐诗三百首,不会做诗也会吟。”学习过程是一个扎扎实实积累的过程,不能打马虎眼离散数学是理论性较强的学科,学习离散数学的关键是对离散数学(集合论、数理逻辑和图论)有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。

《离散数学》的特点是:1知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。2、方法性强:离散数学的特点是抽象思维能力的要求较高。通过对它的学习,能大大提高我们本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。《离 散数学》的证明题多,不同的题型会需要不同的证明方法(如直接证明法、反证法、归纳法、构造性证明法),同一个题也可能有几种方法。但是《离散数学》证明 题的方法性是很强的,如果知道一道题用什么方法讲明,则很容易可以证出来,否则就会事倍功半。因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多 探讨几种证明方法,从而学会熟练运用这些证明方法。同时要善于总结,

在学习《离 散数学》的过程,对概念的理解是学习的重中之重。一般来说,由于这些概念(定义)非常抽象(学习《线性代数》时会有这样的经历),初学者往往不能在脑海中 建立起它们与现实世界中客观事物的联系。这往往是《离散数学》学习过程中初学者要面临的第一个困难,他们觉得不容易进入学习的状态。因此一开始必须准确、 全面、完整地记住并理解所有的定义和定理。具体做法是在进行完一章的学习后,用专门的时间对该章包括的定义与定理实施强记。只有这样才可能本课程的抽象能 够适应,并为后续学习打下良好的基础。

学数学就要做数学,《离散数学》的学习也不例外。学习数学不仅限于学习数学知识,更重要的还在于学习数学思维方法。要做到这一点,学习者将要面临的第二个困难是需要花费大量的时间做课后习题。但是切记离散数学的题目数量自然是无穷无尽的,但题目的种类却很有限。 尤其是在命题证明的过程中,最重要的是要掌握证明的思路和方法。解离散数学的题,方法是非常重要的,如果拿到一道题,立即能够看出它所属的类型及关联的知 识点,就不难选用正确的方法将其解决,反之则事倍功半。例如在命题逻辑部分,无非是这么几种题目:将自然语言表述的命题符号化,等价命题的相互转化(包括 化为主合取范式与主析取范式),以给出的若干命题为前提进行推理和证明。相应的对策也马上就可以提出来。以推理题为例,主要是利用PT规则,加上蕴涵和等价公式表,由给定的前提出发进行推演,或根据题目特点采用真值表法、CP规则和反证法。由此可见,在平常学习中,要善于总结和归纳,仔细体会题目类型和此类题目的解题套路。如此多作练习,则即使遇到比较陌生的题也可以较快地领悟其本质,从而轻松解出。

因此,只要肯下功夫,人人都能有扎实的基础,拥有足够的数学知识,特别是能大大提高本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。

 

学数据结构,是不是一定要先学离散数学

【留言】   学数据结构之前是不是一定要学离散数学【答复】   你问了一个非常好的问题,不少初学计算机的同学该会产生这个疑问(大多数有疑问不提而已,这不是好习惯),更深层地,这里可能包含着我们的学...
  • sxhelijian
  • sxhelijian
  • 2016年01月02日 08:31
  • 9217

机器学习小组知识点27:数据预处理之数据离散化(Data Discretization)

离散化和概念分层产生通过将属性域划分为区间,离散化技术可以用来减少给定连续属性值的个数。区间的标号可以替代实际的数据值。如果使用基于判定树的分类挖掘方法,减少属性值的数量特别有好处。通常,这种方法是递...
  • Eric2016_Lv
  • Eric2016_Lv
  • 2016年12月15日 15:00
  • 2142

机器学习——连续型特征离散化

在特征工程中,特别是logistic regression上,需要把一些连续特征进行离散化处理。离散化除了一些计算方面等等好处,还可以引入非线性特性,也可以很方便的做cross-feature。离散特...
  • ztf312
  • ztf312
  • 2017年01月03日 09:38
  • 1730

《离散数学》学习笔记一之命题逻辑

命题逻辑     命题:
  • u013824975
  • u013824975
  • 2014年06月17日 20:03
  • 1521

离散数学及其应用学习笔记——主定理(Master Theorem)的证明

先贴出两个初中数学公式 使用换根公式和对数倒数性质可以得出这样的结论:alogbn=nlogbaa^{log_bn}=n^{log_ba} 等比数列求和公式:Sn=anq−a1q−1 S_n=\f...
  • u014627430
  • u014627430
  • 2016年12月07日 21:31
  • 1192

离散数学学习笔记 基本逻辑 01

命题逻辑逻辑的基本成分是命题,命题是一个或真或假的陈述语句,即一个陈述事实的句子,但不能既真又假。 涉及命题的逻辑领域称为命题演算或命题逻辑。逻辑运算符非令 pp 为一命题,则 pp 的否定表示为 ...
  • abyss521
  • abyss521
  • 2016年12月16日 18:24
  • 300

离散数学视频、书籍推荐及学习体会

转眼之间开学也两个月了,中间因为一些杂七杂八的恶心的事情,耽误了一个月左右的功夫,其他时间基本都是在学离散数学,现在也基本学完了,对学习内容、方法、书籍做一下小结。 第一,离散数学到底包含哪些内容?...
  • thefutureisour
  • thefutureisour
  • 2013年05月04日 18:58
  • 7688

软件测试(第2版)_Paul学习04_01——Ch3测试人员的离散数学

除了其他生命周期活动外,测试本身还要进行数学描述和分析。这里给出的数学方法就是工具,测试工程师应该清楚地了解如何使用这些工具。通过这些工具,测试人员会变得严格、精确和高效,所有这些都会改进测试。一般来...
  • bobljm
  • bobljm
  • 2016年11月14日 21:22
  • 144

《离散数学及其应用》学习(上)

一.逻辑和证明,集合,函数 1.逻辑难题 http://www.2144.cn/html/88/6426/ ...
  • shiyuankongbu
  • shiyuankongbu
  • 2013年01月12日 21:09
  • 1432

离散数学学习笔记1

第一章 基础:逻辑、集合和函数 本章复习离散数学的基础。有三个主要内容:逻辑、集合和函数。逻辑规则给出数学语句的准确含义。例如,逻辑规则告诉我们下列语句的含义:“存在一个大于100且是2的幂的整数”...
  • u010461609
  • u010461609
  • 2013年06月13日 10:59
  • 940
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[转]如何学习《离散数学》?
举报原因:
原因补充:

(最多只允许输入30个字)