[UOJ261]天天爱跑步

原创 2017年05月25日 18:58:52

问题描述:小C同学认为跑步非常有趣,于是决定制作一款叫做《天天爱跑步》的游戏。《天天爱跑步》是一个养成类游戏,需要玩家每天按时上线,完成打卡任务。

这个游戏的地图可以看作一棵包含 n 个结点和 n−1 条边的树,每条边连接两个结点,且任意两个结点存在一条路径互相可达。树上结点编号为从 1 到 n 的连续正整数。

现在有 mm 个玩家,第 ii 个玩家的起点为 Si,终点为 Ti。每天打卡任务开始时,所有玩家在第 00 秒同时从自己的起点出发,以每秒跑一条边的速度,不间断地沿着最短路径向着自己的终点跑去,跑到终点后该玩家就算完成了打卡任务。(由于地图是一棵树,所以每个人的路径是唯一的)

小C想知道游戏的活跃度,所以在每个结点上都放置了一个观察员。在结点 j 的观察员会选择在第 Wj 秒观察玩家,一个玩家能被这个观察员观察到当且仅当该玩家在第 Wj 秒也正好到达了结点 j。小C想知道每个观察员会观察到多少人?

注意:我们认为一个玩家到达自己的终点后该玩家就会结束游戏,他不能等待一段时间后再被观察员观察到。即对于把结点 j 作为终点的玩家:若他在第 Wj 秒前到达终点,则在结点 j 的观察员不能观察到该玩家;若他正好在第 Wj 秒到达终点,则在结点 j 的观察员可以观察到这个玩家。

输入格式
从标准输入读入数据。

第一行有两个整数 n 和 m。其中 n 代表树的结点数量,同时也是观察员的数量,m 代表玩家的数量。

接下来 n−1 行每行两个整数 u 和 v,表示结点 u 到结点 v 有一条边。

接下来一行 n 个整数,其中第 j 个整数为 Wj,表示结点 j 出现观察员的时间。

接下来 mm 行,每行两个整数 Si 和 Ti,表示一个玩家的起点和终点。

对于所有的数据,保证 1≤Si,Ti≤n1≤Si,Ti≤n,0≤Wj≤n0≤Wj≤n。

输出格式
输出到标准输出。

输出 11 行 n 个整数,第 j 个整数表示结点 j 的观察员可以观察到多少人。
分析:
1.对于每一点,考虑它在u到lca和lca到v的路径上两种情况
2.若它再u到lca上应该满足 w[x]+dep[x]=dep[u],否则它应该满足w[x]-dep[x]=dis(u,v)-dep[v] 即w[x]-dep[x]=dep[u]-2*dep[lca]
3.于是问题就变成了,求一棵子树中深度为为一特定值的点数,可以用可持久化线段树,重点是以(2)中等式右半边建树运用树上差分,再区间询问sum
4.注意不要算重

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
using namespace std;
const int maxn=300010;
int to[maxn*2],Next[maxn*2],Begin[maxn],e;
int top[maxn],in[maxn],out[maxn];
int sum[maxn<<2];
int sz,cnt;
int ans[maxn];
int w[maxn];
int n,m;
void read(int& x){
    x=0;
    char c=getchar();
    while(c<'0' || c>'9') c=getchar();
    while(c>='0' && c<='9'){
        x=x*10+c-'0';
        c=getchar();
    }
}
void add(int x,int y){
    to[++e]=y;
    Next[e]=Begin[x];
    Begin[x]=e;
}
struct node{
    int s,t;
    int lca;
}a[maxn];
int dep[maxn],size[maxn],son[maxn],fa[maxn];
void dfs1(int x){
    in[x]=++cnt;
    size[x]=1;
    for(int i=Begin[x];i;i=Next[i]){
        int v=to[i];
        if(v==fa[x]) continue;
        fa[v]=x;
        dep[v]=dep[x]+1;
        dfs1(v);
        size[x]+=size[v];
        if(size[v]>size[son[x]]) son[x]=v;
    }
    out[x]=cnt;
}
void dfs2(int x){
    if(!son[x]) return;
    top[son[x]]=top[x];
    dfs2(son[x]);
    for(int i=Begin[x];i;i=Next[i]){
        int v=to[i];
        if(v==son[x] || v==fa[x]) continue;
        top[v]=v;
        dfs2(v);
    }
}
int LCA(int x,int y){
    while(top[x]!=top[y]){
        if(dep[top[x]]<dep[top[y]]) swap(x,y);
        x=fa[top[x]];
    }
    if(dep[x]>dep[y]) swap(x,y);
    return x;
}
int t[maxn];
int ch[maxn][2];
int root[maxn];
void init(){
    sz=0;
    memset(root,0,sizeof(root));memset(ch,0,sizeof(ch));memset(sum,0,sizeof(sum));
}
void update(int& o,int l,int r,int pos,int v){
    if(!pos) return;
    if(!o) o=++sz;
    sum[o]+=v;
    if(l==r) return;
    int mid=(l+r)>>1;
    if(pos<=mid) update(ch[o][0],l,mid,pos,v);
    else update(ch[o][1],mid+1,r,pos,v);
}
int query(int o,int l,int r,int ql,int qr){
    if(ql<=l && qr>=r){
        return sum[o];
    }
    int mid=(l+r)>>1;
    int ret=0;
    if(ql<=mid) ret+=query(ch[o][0],l,mid,ql,qr);
    if(qr>mid) ret+=query(ch[o][1],mid+1,r,ql,qr);
    return ret;
}
int main(){
    read(n);read(m);
    int u,v;
    for(int i=1;i<n;i++) read(u),read(v),add(u,v),add(v,u);
    dep[1]=1;top[1]=1;
    dfs1(1);dfs2(1);
    for(int i=1;i<=n;i++) read(w[i]);
    for(int i=1;i<=m;i++) read(a[i].s),read(a[i].t),a[i].lca=LCA(a[i].s,a[i].t);
    for(int i=1;i<=n;i++) t[i]=dep[i]+w[i];
    for(int i=1;i<=m;i++){
        int now=dep[a[i].s];
        update(root[now],1,n,in[a[i].s],1);update(root[now],1,n,in[fa[a[i].lca]],-1);
    }
    for(int i=1;i<=n;i++) ans[i]+=query(root[t[i]],1,n,in[i],out[i]);
    init();
    for(int i=1;i<=n;i++) t[i]=w[i]-dep[i]+n+1;
    for(int i=1;i<=m;i++){
        int now=dep[a[i].s]-2*dep[a[i].lca]+n+1;
        update(root[now],1,n,in[a[i].t],1);update(root[now],1,n,in[a[i].lca],-1);
    }
    for(int i=1;i<=n;i++) ans[i]+=query(root[t[i]],1,n,in[i],out[i]);
    for(int i=1;i<=n;i++) printf("%d ",ans[i]);
    return 0;
}

^_^

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Jquery增加样式类别

在jquery中,通过addClass()方法增加元素类别的名称,语法格式:addClass(class)。其中,参数class为样式的名称,也可以增加多个类别的名称,中间用空格隔开即可。 示例: ...

图论算法---- 一笔画问题(欧拉路)

一、题目描述 题目描述 对给定的一个无向图,判断能否一笔画出。若能,输出一笔画的先后顺序,否则输出“No Solution!” 所谓一笔画出,即每条边仅走一次,每个顶点可以多次经过。 输出字典...

小结:区间处理和统计与高级数据结构

小结:区间处理和统计与高级数据结构

【NOIP2016提高组复赛】天天爱跑步

Description Solution 这道题是NOIP里面最难的一道题。 暴力打的好可以拿80分,比赛的时候还是打暴力比较好。 我们思考一下从x到y的路径,这个可以拆成从x到lca...

bzoj 4719: [Noip2016]天天爱跑步 线段树合并

题意有一棵n个节点的树,每条边权为1,每个节点都会在某一个时间出现观察员且只会出现一次。现有m个玩家,给定每个玩家的起点,然后每个玩家会在时刻0从起点出发,沿着唯一的路径走向终点。问每个观察员分别可以...

【NOIP 2016 提高组】天天爱跑步

Description Solution1 设一个点的深度为did_i,巡查的时间为WiW_i, 一个人的路径起点为s,LCA为z,终点为t,总共用时T, 把路径拆成向上和向下两段, 那么,如果...
  • HOWARLI
  • HOWARLI
  • 2016年11月30日 20:20
  • 490

NOIP2016 day1 T2 天天爱跑步 running 题解

NOIP2016 day2 T2 天天爱跑步 running 题解

[NOIP2016]天天爱跑步

题目大意给定一个nn个节点,n−1n-1条边的树。有mm个玩家,第ii个玩家从xix_i走树上最短路径到yiy_i。玩家第00秒在自己的起点上,然后每秒移动一条边,移动到终点后结束移动。 每个节点上...

NOIP2016提高组day2 天天爱跑步

Description Data Constraint Solution 我们可以将一个询问

洛谷P1600 天天爱跑步(NOIp2016)(BZOJ4719)

LCA
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[UOJ261]天天爱跑步
举报原因:
原因补充:

(最多只允许输入30个字)