关闭

python 中赋值 copy() 与 ' = ' 号以及比较符'=='号 与 'is'

关于比较符号’==’号 与 ‘is’这里主要是为下文铺垫 == 比较操作符:用来比较两个对象是否相等,value做为判断因素 is 同一性运算符:比较判断两个对象是否相同,id做为判断因素关于copy()与 =主要是今天在写数组的时候发现了 这个问题 想到了 python中的数组赋值以及对象问题 简单的写一下 好记性不如烂笔头 直接上代码 :import copya = [1,2,3]...
阅读(97) 评论(0)

PAT - 1107. Social Clusters (30) 并查集

1107.Social Clusters (30)When register on a social network, you are always asked to specify your hobbies in order to find some potential friends with the same hobbies. A “social cluster” is a set of pe...
阅读(61) 评论(1)

关于sklearn.svm.SVC与.NuSVC的区别以及参数介绍

0. 区别SVC与NuSVC是类似的方法,但是接受稍微不同的参数集合并具有不同的数学公式 ,并且NuSVC可以使用参数来控制支持向量的个数 , 以下代码默认的是多分类1. SVC # coding:utf-8from sklearn import svm from numpy import *X = array([[0], [1], [2], [3]]) y = array([0, 1, 2, 3]...
阅读(214) 评论(0)

关于数据降维函数sklearn-PCA的使用

1. PCA介绍PCA是主成分分析,用来降维,用少量的变量去解释大部分变量,使得变量维度减少,从而减少计算量。2. 调用方法 以及 参数的简单介绍 # 先看看PCA构造函数中的默认参数 ''' def __init__(self, n_components=None, copy=True, whiten=False, svd_solver='auto', tol=0...
阅读(107) 评论(0)

利用Apriori算法进行关联分析

1. Apriori算法Apriori算法是一种挖掘关联规则的频繁项集算法,这些关系有两种形式 : 频繁项集和关联规则。 举个例子就知道了:著名的”尿布与啤酒”。 这就是通过关联分析来获取到的结果。2. 名词解释前后文中存在的名词都放在这里了 1. 频繁项集 : 在事件集合中出现频繁的项目 2. 关联规则 : 尿布-啤酒 关联等等 说明有很大的几率同时出现 3. 支持度:该项出现的次...
阅读(291) 评论(0)

AdaBoost元算法数据集

# 训练集 ''' 2.000000 1.000000 38.500000 66.000000 28.000000 3.000000 3.000000 0.000000 2.000000 5.000000 4.000000 4.000000 0.000000 0.000000 0.000000 3.000000...
阅读(112) 评论(0)

利用AdaBoost元算法提高分类性能

1. 元算法介绍 做重要决定时,大家可能会考虑多个权威的意见而不是一个人的意见,机器学习中也是如此,这就是元算法的背后思想。元算法是对其他算法组合的一种方式。 优点:泛化错误低,易编码,可以用在大部分分类器上,无参数调整问题 缺点:对离群点敏感 2. AdaBoost思想 以及 涉及公式2.1 简单理解AdaBoost是adaptive boosting(自适应boosting)的缩写,是利用弱分类...
阅读(363) 评论(0)

神经网络NN简单理解以及算法

1.什么是神经网络1.1 背景 : 以人脑中的神经网络为启发,历史上出现过很多不同版本 最著名的算法是1980年的 backpropagation 1.2 多层向前神经网络(Multilayer Feed-Forward Neural Network) Backpropagation被使用在多层向前神经网络上 多层向前神经网络由以下部分组成: 输入层(input layer), 隐藏层 (hid...
阅读(154) 评论(2)

简单Trie树

#include #include #include using namespace std; const int maxn=500010; int num; int indegree[maxn]; int root[maxn]; char sx[12],sy[12]; typedef struct trie { int cnt; int exist; trie...
阅读(135) 评论(0)

Power Strings poj2406 (kmp 进阶 next数组使用)

Power Strings Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 46647   Accepted: 19516 Description Given two strings a and b we define a*b to be their concate...
阅读(149) 评论(0)

支持向量机(SVM)理解以及在sklearn库中的简单应用

1. 什么是支持向量机 英文Support Vector Machines,简写SVM . 主要是基于支持向量来命名的,什么是支持向量后面会讲到…….最简单的SVM是用来二分类的,在深度学习崛起之前被誉为最好的现成分类器,”现成”指的是数据处理好,SVM可以直接拿来使用 … 2. 名词解释2.1线性(不)可分 , 超平面 上图 线性可分(绿色荧光笔直线),即一条直线完美分类,虽然有不同的分割法,...
阅读(1434) 评论(4)

支持向量机-数据集

# 训练集 ''' 1.000000 0.067732 3.176513 1.000000 0.427810 3.816464 1.000000 0.995731 4.550095 1.000000 0.738336 4.256571 1.000000 0.981083 4.560815 1.000000 0.526171 3.929515 1.000000 0.378887 3.526170...
阅读(232) 评论(0)

树回归问题

1. 树回归基于之前的线性回归,树回归归根结底也是回归,但不同的是,树回归可以更好的处理多特征的非线性回归问题,其基本思想就是切分数据集,切分至易拟合的数据集后进行线性回归建模。(复杂数据的局部建模)1.1回归树 节点为数值型/标称型 模型树 节点为线性模型2.优缺点优点: 可以对复杂的非线性数据建模 缺点: 结果不易理解,抽象化3.伪代码''' 部分核心代码伪代码1.建树creatTree...
阅读(225) 评论(0)

回归算法之岭回归

1. 岭回归 首先,说一下岭回归名字的由来,w^=(XTX+λI)−1⋅XTy\hat{w} = (X^TX + \lambda I)^{-1}·X^Ty,其中,I 是单位矩阵(对角线全是1,像”山岭“),λ\lambda 是岭系数(顾名思义…改变其数值可以改变单位矩阵对角线的值) 其次,岭回归是基于最小二乘法 w^=(XTX)−1⋅XTy\hat{w} = (X^TX)^{-1}·X^Ty...
阅读(237) 评论(0)

线性回归以及局部加权回归

0回归的含义 1线性回归 1-1 数学公式 1-2 误差以及公式最小二乘法 1-3 伪代码 1-4 代码 见下文2-4 1-5 图像以及结果 1-6 优缺点与改进 2 局部加权回归 2-1 数学公式 图像 以及 思想 2-2 伪代码 2-3 代码 包含本文所有代码 2-4 图像 附 测试数据 0.回归的含义回归 英文:regress 用了倒推的含义,利用了数学的归纳思想,...
阅读(214) 评论(0)
117条 共8页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:35357次
    • 积分:1550
    • 等级:
    • 排名:千里之外
    • 原创:115篇
    • 转载:2篇
    • 译文:0篇
    • 评论:7条
    博客专栏