矩阵构造方法汇总(结合递推)

本文介绍了矩阵构造在解决递推问题中的应用,如快速求解Fibonacci数列,以及如何处理非线性递推式。还讨论了矩阵在二维图形几何变换中的作用,如点的旋转,并给出了结合题目语义处理递推问题的例子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵构造方法,这个是网络预赛被坑了以后才研究的。

1.矩阵构造

一般来看先明确要求哪些量,这些量构成一个列矩阵(一定要反映递推式中的各个)然后构造矩阵A去得到递推项

他人的一个总结:点击打开链接  矩阵十题   二维图形几何变换

矩阵的引例,Fibonacci数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的第n项快速求法

【f[n-2],f[n-1]】*A = 【f[n-1],f[n]】=【f[n-1],f[n-1]+f[n-2]】

【f[1],f[2]】×A ^(n-1) =【f[n],f[n+1]】


例如:A(0) = 1 , A(1) = 1 , A(N) = X *A(N - 1) + Y * A(N - 2) (N >= 2);给定三个值N,X,Y求S(N):S(N) = A(0)^2 +A(1)^2+……+A(n)^2。

解:这道题不同于之前都是线性的递推式,这里的有平方项。Sn容易得出,只要再加An^2即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值