优化算法——坐标上升法

标签: 优化算法坐标上升法
4944人阅读 评论(0) 收藏 举报
分类:

一、坐标上升法算法原理

坐标上升法(Coordinate Ascent)每次通过更新函数中的一维,通过多次的迭代以达到优化函数的目的。

假设需要求解的优化问题的具体形式如下:

maxαW(α1,α2,,αm)

其中,W是向量α⃗ 的函数。

更新过程为每次固定除αi以外的参数,求得满足条件的αi,直到算法收敛,具体的算法过程如下所示:

这里写图片描述
(图片来自参考文献1)

下面以如下的优化问题为例:

f(x1,x2)=x213x22+2x1x2+6

在迭代的过程中,每次固定x2更新x1,在确定了x1的条件下,固定x1,更新x2,即:

fx1=2x1+2x2

令其为0,得到:

x1=x2

再固定x2,得到:

fx2=6x2+2x1

得到:

x2=13x1

不断按照上述的过程,直到算法收敛。下图是算法在整个过程中的更新曲线:

这里写图片描述

代码如下:

'''
Date: 20160406
@author: zhaozhiyong
'''
import matplotlib
import numpy as np
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt

delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = -(X**2)
Z2 = -(Y**2)
Z = 1.0 * (Z1 + 3 * Z2 + 2 * X * Y)+6.0

plt.figure()

CS = plt.contour(X, Y, Z)

a = []
b = []

a.append(2.0)
b.append(2.0)

j = 1

for i in xrange(200):
    a_tmp = b[j-1]
    a.append(a_tmp)
    b.append(b[j-1])

    j = j+1

    b_tmp = a[j-1] / 3
    a.append(a[j-1])
    b.append(b_tmp)

plt.plot(a,b)

plt.title('Coordinate Ascent')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

二、坐标上升法在函数优化中的应用

下面考虑求解如下的最大值问题:

argmaxx1,x2,x3f(x1,x2,x3)=x212x223x23+2x1x2+2x1x34x2x3+6

将上述函数分别对x1,x2,x3求偏导,并令其为0,得到如下的等式:

x1=x2+x3

x2=12x1x3

x3=13x123x2

最终的结果为:

这里写图片描述

代码如下:

#!/bin/python
'''
Date: 20160406
@author: zhaozhiyong
'''

def f(x):
    x_1 = x[0]
    x_2 = x[1]
    x_3 = x[2]

    result = -(x_1*x_1)-2*(x_2*x_2)-3*(x_3*x_3)+2*x_1*x_2+2*x_1*x_3-4*x_2*x_3+6

    return result


if __name__ == "__main__":
    #print "hello world"
    err = 1.0e-10
    x = [1.0, 1.0, 1.0]
    f_0 = f(x)
    while 1:
        #print "Hello"
        x[0] = x[1] + x[2]
        x[1] = x[0] / 2 - x[2]
        x[2] = x[0] / 3 - 2 * x[1] / 3

        f_t = f(x)

        if (abs(f_t - f_0) < err):
            break

        f_0 = f_t

    print "max: " + str(f_0)
    print x

参考文章

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人声明

    欢迎大家加群,探讨与机器学习相关技术相关的话题:


    101620539


    博客的主要内容主要是自己的学习笔记,并结合个人的理解,供各位在学习过程中参考,若有疑问,欢迎提出;若有侵权,请告知博主删除,原创文章转载还请注明出处。

    -----------------

    我写的书:

    Python机器学习算法

    购买链接:

    京东-Python机器学习算法
    个人资料
    • 访问:1141314次
    • 积分:10227
    • 等级:
    • 排名:第1852名
    • 原创:155篇
    • 转载:1篇
    • 译文:1篇
    • 评论:535条
    博客专栏
    联系我
    Email:zhaozhiyong1989@126.com

    最新评论