深度学习Deep Learning
详细介绍深度学习的每一种算法原理
zhiyong_will
这个作者很懒,什么都没留下…
-
原创 推荐系统中的常用算法——DeepWalk算法
参考文献Perozzi B, Alrfou R, Skiena S. DeepWalk: online learning of social representations[J]. 2014:701-710.DeepWalk源码《DeepWalk: Online Learning of Social Representations》笔记C实现的DeepWalk...2020-09-16 01:25:28298
0
-
原创 深度学习算法原理——经典CNN结构之LeNet-5
参考文献2019-06-15 09:21:05617
0
-
原创 深度学习算法原理——经典CNN结构之AlexNet
AlexNet卷积神经网络是具有历史意义的网络结构,其在2012年的ImageNet图像分类竞赛中,top-5错误率比上一年的冠军下降了十个百分点,而且远远超过当年的第二名。1、AlexNet的网络结构 参考文献2019-06-22 13:33:19897
0
-
原创 深度学习算法原理——Deep Structured Semantic Models(DSSM)
参考文献https://blog.csdn.net/shine19930820/article/details/788109842019-06-22 15:17:421922
1
-
原创 推荐系统——(论文阅读笔记)YouTube推荐中的深层神经网络
这篇文章是阅读YouTube的《Deep Neural Networks for YouTube Recommendations》后的一点总结,这篇文章值得详细阅读,因此将其中的核心点整理出来。文章的重点1、总结推荐系统的架构2、如何利用深度模型做召回3、如何利用深度模型做Ranking1、推荐系统的架构在本文中,推荐系统的架构与其他的推荐架构极为类似,都是由两...2017-08-25 13:17:075468
3
-
原创 论文阅读——利用Binary Hash Codes的深度图像检索
这篇文章是阅读《Deep Learning of Binary Hash Codes for Fast Image Retrieval》后的总结,该文章提出了一种利用CNN处理基于内容的图像检索的方法。文章的重点图像的binary hash code的生成方法两阶段的检索方法——coarse-to-fine search strategy1、基于内容的图像检索...2017-08-29 14:03:252856
0
-
原创 利用Theano理解深度学习——Convolutional Neural Networks
注:本系列是基于参考文献中的内容,并对其进行整理,注释形成的一系列关于深度学习的基本理论与实践的材料,基本内容与参考文献保持一致,并对这个专题起名为“利用Theano理解深度学习”系列,若文中有任何问题欢迎咨询。本文提供PDF版本,欢迎索取。“利用Theano理解深度学习”系列分为44个部分,其中第一部分主要包括:利用Theano理解深度学习——Logistic Regression利用Thea2015-11-21 17:53:165675
0
-
原创 利用Theano理解深度学习——Auto Encoder
注:本系列是基于参考文献中的内容,并对其进行整理,注释形成的一系列关于深度学习的基本理论与实践的材料,基本内容与参考文献保持一致,并对这个专题起名为“利用Theano理解深度学习”系列,若文中有任何问题欢迎咨询。本文提供PDF版本,欢迎索取。“利用Theano理解深度学习”系列分为44个部分,这是第二部分,在第一部分中的算法主要是监督学习算法,在这部分中主要是无监督学习算法和半监督学习算法,主要包括2015-11-29 17:42:445210
2
-
原创 利用Theano理解深度学习——Multilayer Perceptron
一、多层感知机MLP1、MLP概述对于含有单个隐含层的多层感知机(single-hidden-layer Multi-Layer Perceptron, MLP),可以将其看成是一个特殊的Logistic回归分类器,这个特殊的Logistic回归分类器首先通过一个非线性变换Φ\Phi (non-linear transformation)对样本的输入进行非线性变换,然后将变换后的值作为Logisti2015-10-12 11:23:216163
0
-
原创 利用Theano理解深度学习——Logistic Regression
一、Logistic Regression1、LR模型Logistic回归是广义线性模型的一种,属于线性的分类模型,在其模型中主要有两个参数,即:权重矩阵WW和偏置向量bb。在Logistic回归中,主要是将输入向量映射到一组超平面,每一个超平面代表了一个类别。输入向量到超平面的距离表示的是输入向量属于对应的类别的成员的概率。对于输入向量xx,其属于类别ii的概率为:P(Y=i∣x,W,b)=sof2015-10-08 18:41:5816418
9
-
原创 深度学习算法原理——栈式自编码神经网络
注:最近打算将UFLDL教程重新看一遍,其实里面有很多关于神经网络以及深度学习的知识点很有用,但是只是学习深度学习的话有一些内容就有点多余,所以想整理一个笔记,记录下神经网络到深度学习的一些知识点。整个教材已经非常好,网上有原版的英文版,也有翻译的中文版,这个只是自己的学习笔记,对原来教程中的内容进行了梳理,有些图也是引用的原来的教程,若内容上有任何错误,希望与我联系,若内容有侵权,同样也希望告知...2015-11-13 14:31:5915517
2
-
原创 深度学习算法原理——稀疏自编码器
注:最近打算将UFLDL教程重新看一遍,其实里面有很多关于神经网络以及深度学习的知识点很有用,但是只是学习深度学习的话有一些内容就有点多余,所以想整理一个笔记,记录下神经网络到深度学习的一些知识点。整个教材已经非常好,网上有原版的英文版,也有翻译的中文版,这个只是自己的学习笔记,对原来教程中的内容进行了梳理,有些图也是引用的原来的教程,若内容上有任何错误,希望与我联系,若内容有侵权,同样也希望告知,2015-11-09 14:40:139286
2
-
原创 深度学习算法原理——Softmax Regression
一、Logistic回归简介Logistic回归是解决二分类问题的分类算法。假设有mmm个训练样本{(x(1),y(1)),(x(2),y(2)),⋯,(x(m),y(m))}{(x(1),y(1)),(x(2),y(2)),⋯,(x(m),y(m))}\left \{ \left ( \mathbf{x}^{(1)},y^{(1)} \right ),\left ( \mathbf{x}^{...2015-11-09 14:46:2816908
6
-
原创 深度学习算法原理——神经网络的基本原理
一、神经网络1、神经元概述神经网络是由一个个的被称为“神经元”的基本单元构成,单个神经元的结构如下图所示: 对于上述的神经元,其输入为x1x1x_1,x2x2x_2,x3x3x_3以及截距+1+1+1,其输出为:hW,b(x)=f(WTx)=f(∑i=13Wixi+b)hW,b(x)=f(WTx)=f(∑i=13Wixi+b)h_{\mathbf{W},b}\le...2015-11-09 11:41:0125491
0
-
原创 深度学习算法原理——RCNN
相比较于图像分类来说,目标检测(Object Detection)不仅需要标记出图像中的物体(通常使用边框标记),同时需要指出该物体是什么。一般比较直观的想法包括以下的三个步骤:得到候选区域;提取候选区域的特征;对该候选区域分类;RCNN(Region with CNN features),又称为基于区域的卷积神经网络,也是基于上述的思路的一种目标检测的方法,基本的思路如下图所示:...2019-10-02 15:19:051044
0