关闭

【ZJOI2010】network-网络扩容

651人阅读 评论(0) 收藏 举报
分类:

题解参考:http://blog.sina.com.cn/s/blog_86942b140101450q.html

Description

给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。
求:
 1、 在不扩容的情况下,1到N的最大流;
 2、 将1到N的最大流增加K所需的最小扩容费用。

Input

输入文件的第一行包含三个整数N,M,K,表示有向图的点数、边数以及所需要增加的流量。 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边。

Output

输出文件一行包含两个整数,分别表示问题1和问题2的答案。

Sample Input

5 8 2
1 2 5 8
2 5 9 9
5 1 6 2
5 1 1 8
1 2 8 7
2 5 4 9
1 2 1 1
1 4 2 1

Sample Output

13 19

30%的数据中,N<=100

100%的数据中,N<=1000,M<=5000,K<=10


【分析】
第一问很显然,直接SAP跑一遍最大流即可。
第二问的话,明显是费用流。但是有两个问题,
  1. 第一次最大流跑出来的残量图对于最小费用来说不一定最优,可能需要退流。
  2. 还可以扩容。
我们可以想到,答案可能在多条路上扩容。我们的目的是尽量经过那些还有残余流量与扩容费用较小的边。
而残量图不一定最优,简单的求费用流肯定不行。
那么我们可不可以重新建图,使如此复杂的问题变为求简单的费用流的问题呢?
在第一次的基础上,将残量图的原来所有边价值清零,残量不变,表示在该残量上扩容不需要代价。
新建所有边的附属边,价值为原来的价值,残量为max(K-flow,0),表示在原来流量flow上扩容至K,每加1流的代价为W。限制总流量为K。
然后跑一次费用流即可。
原图:

残余网络:

建边:


【代码】
/*
    ID:Ciocio
	LANG:C++
	DATE:2013-12-05
	TASK:Network
*/
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

#define MAXM 40000
#define MAXN 1005
#define INF 999999999

int N,M,K,Sta,End,Maxflow,Mincost;
int X[MAXM],Y[MAXM],Last[MAXM],Next[MAXM],C[MAXM],W[MAXM];
int G[MAXN][MAXN],dis[MAXN],vd[MAXN],path[MAXN],edge[MAXN];
bool vis[MAXN];

int tot=1;
void _addedge(int a,int b,int c,int w)
{
	tot++;
	X[tot]=a;
	Y[tot]=b;C[tot]=c;W[tot]=w;
	Next[tot]=Last[a];
	Last[a]=tot;
	tot++;
	Y[tot]=a;C[tot]=0;W[tot]=-w;
	Next[tot]=Last[b];
	Last[b]=tot;
}

void _init()
{
	scanf("%d%d%d",&N,&M,&K);
	int u,v,c,w;
	for(int i=1;i<=M;i++)
	{
		scanf("%d%d%d%d",&u,&v,&c,&w);
		G[u][v]=w;
		_addedge(u,v,c,0);
	}
	Sta=1;End=N;
}

int _SAP(int u,int flow)
{
	if(u==N) return flow;
	int delta=0;
	for(int j=Last[u];j;j=Next[j])
	{
		int v=Y[j];
		if(C[j]>0&&dis[u]==dis[v]+1)
		{
			int temp=_SAP(v,min(flow-delta,C[j]));
			C[j]-=temp;
			C[j^1]+=temp;
			delta+=temp;
			if(delta==flow) return delta;
		}
	}
	if(dis[Sta]>=N) return delta;
	vd[dis[u]]--;
	if(vd[dis[u]]==0) dis[Sta]=N;
	dis[u]++;
	vd[dis[u]]++;
	return delta;
}

queue <int> Q;
bool _findpath()
{
	for(int i=Sta;i<=End;i++) {dis[i]=INF;path[i]=-1;vis[i]=false;edge[i]=0;}
	dis[Sta]=path[Sta]=0;vis[Sta]=true;
	while(!Q.empty()) Q.pop();
	Q.push(Sta);
	while(!Q.empty())
	{
		int u=Q.front();Q.pop();
		vis[u]=false;
		for(int j=Last[u];j;j=Next[j])
		{
			int v=Y[j];
			if(C[j]>0&&dis[v]>dis[u]+W[j])
			{
				dis[v]=dis[u]+W[j];
				path[v]=u;edge[v]=j;
				if(!vis[v])
				{
					vis[v]=true;
					Q.push(v);
				}
			}
		}
	}
	return dis[End]<INF;
}

void _addflow()
{
	int flow=INF,cost=0,i;
	i=End;
	while(i!=Sta&&path[i]!=0&&edge[i]!=0)
	{
		flow=min(flow,C[edge[i]]);
		cost+=W[edge[i]];
		i=path[i];
	}
	Maxflow+=flow;
	Mincost+=flow*cost;
	i=End;
	while(i!=Sta&&path[i]!=0&&edge[i]!=0)
	{
		C[edge[i]]-=flow;
		C[edge[i]^1]+=flow;
		i=path[i];
	}
}

void _solve()
{
	int ans=0;
	while(dis[Sta]<End)
	    ans+=_SAP(Sta,INF);
	cout<<ans<<" ";
	M=tot;
	for(int i=2;i<=M;i+=2)
	{
		int u=X[i],v=Y[i];
		_addedge(u,v,max(K-C[i],0),G[u][v]);
	}
	Maxflow=Mincost=0;
	while(_findpath())
	{
		_addflow();
		if(Maxflow>=K)
			break;
	}
	cout<<Mincost<<endl;
}

int main()
{
	_init();
	_solve();
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:114419次
    • 积分:2405
    • 等级:
    • 排名:第15488名
    • 原创:129篇
    • 转载:4篇
    • 译文:0篇
    • 评论:16条
    最新评论