最小生成树-克鲁斯卡尔算法(kruskal's algorithm)实现

克鲁斯卡尔算法是一种贪心策略,用于寻找图的最小生成树,通过选择当前最轻的边并避免形成回路。算法核心是使用并查集判断边的加入是否会导致环的出现。并查集的高效实现有助于算法性能。在实现上,算法以优先队列维护边,总时间复杂度为O(ElogV),适合连通图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法描述

克鲁斯卡尔算法是一种贪心算法,因为它每一步都挑选当前最轻的边而并不知道全局路径的情况.
算法最关键的一个步骤是要判断要加入mst的顶点是否会形成回路,我们可以利用并查集的技术来做。

并查集的具体实现可参考:快速并查集

下面是对算法的一个简单描述:
kruskal

这是一个非常简单易懂的算法,它面向边而不是顶点,所以在算法开始的时候,它要先找出所有的crossing edges,而为了高效的找到最轻边,用一个优先队列来维护这些crossing edges.

    /**
     * 找出所有crossing edges并加入优先队列
     */
    private void findAllCrossingEdges(){
        for(Vertex v:this.vertices) {
            for(Edge edge:v.Adj) {
                WeightedEdge we = (WeightedEdge)edge;
                this
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值