斯坦纳树 Steiner Tree

原创 2013年06月18日 21:24:50

      不久前学习了斯坦纳树,今天决定记录下。以便日后忘了,好回忆起来。


1. 什么是斯坦纳树?

       斯坦纳树问题是组合优化学科中的一个问题。将指定点集合中的所有点连通,且边权总和最小的生成树称为最小斯坦纳树(Minimal Steiner Tree),其实最小生成树是最小斯坦纳树的一种特殊情况。而斯坦纳树可以理解为使得指定集合中的点连通的树,但不一定最小。

2. 如何求解最小斯坦纳树

      可以用DP求解,dp[i][state]表示以i为根,指定集合中的点的连通状态为state的生成树的最小总权值。

      转移方程有两重:

      第一重,先通过连通状态的子集进行转移。

      dp[i][state]=min{ dp[i][subset1]+dp[i][subset2] } 

      枚举子集的技巧可以用 for(sub=(state-1)&state;sub;sub=(sub-1)&state)。


      第二重,在当前枚举的连通状态下,对该连通状态进行松弛操作。

      dp[i][state]=min{ dp[i][state], dp[j][state]+e[i][j] }

      为什么只需对该连通状态进行松弛?因为更后面的连通状态会由先前的连通状态通过第一重转移得到,所以无需对别的连通状态松弛。松弛操作用SPFA即可。


      复杂度 O(n*3^k+cE*2^k)

      c为SPFA复杂度中的常数,E为边的数量,但几乎达不到全部边的数量,甚至非常小。3^k来自于子集的转移sum{C(i,n)*2^i} (1<=i<=n),用二项式展开求一下和。


模版:

/*
 *  Steiner Tree:求,使得指定K个点连通的生成树的最小总权值
 *  st[i] 表示顶点i的标记值,如果i是指定集合内第m(0<=m<K)个点,则st[i]=1<<m 
 *  endSt=1<<K
 *  dptree[i][state] 表示以i为根,连通状态为state的生成树值
 */
#define CLR(x,a) memset(x,a,sizeof(x))

int dptree[N][1<<K],st[N],endSt;
bool vis[N][1<<K];
queue<int> que;

int input()
{
   /*
	*    输入,并且返回指定集合元素个数K
	*    因为有时候元素个数需要通过输入数据处理出来,所以单独开个输入函数。
    */
}

void initSteinerTree()
{
	CLR(dptree,-1);
	CLR(st,0);
	for(int i=1;i<=n;i++) CLR(vis[i],0);
	endSt=1<<input();
	for(int i=1;i<=n;i++)
		dptree[i][st[i]]=0;
}

void update(int &a,int x)
{
	a=(a>x || a==-1)? x : a;
}

void SPFA(int state)
{
	while(!que.empty()){
		int u=que.front();
		que.pop();
		vis[u][state]=false;
		for(int i=p[u];i!=-1;i=e[i].next){
			int v=e[i].vid;
			if(dptree[v][st[v]|state]==-1 || 
				dptree[v][st[v]|state]>dptree[u][state]+e[i].w){

			    dptree[v][st[v]|state]=dptree[u][state]+e[i].w;
				if(st[v]|state!=state || vis[v][state]) 
					continue; //只更新当前连通状态
				vis[v][state]=true;
				que.push(v);
			}
		}
	}
}

void steinerTree()
{
	for(int j=1;j<endSt;j++){
		for(int i=1;i<=n;i++){
			if(st[i] && (st[i]&j)==0) continue;
			for(int sub=(j-1)&j;sub;sub=(sub-1)&j){
				int x=st[i]|sub,y=st[i]|(j-sub);
				if(dptree[i][x]!=-1 && dptree[i][y]!=-1)
					update(dptree[i][j],dptree[i][x]+dptree[i][y]);
			}
			if(dptree[i][j]!=-1) 
				que.push(i),vis[i][j]=true;
		}
		SPFA(j);
	}
}

也有用Floyd求的,但是个人认为还是SPFA效率稳定。Floyd的话,数据达到三五百就可能T了。

版权声明:本文为我原创文章,转载请注明出处

浅析SteinerTree(斯坦纳树)

前几天看ZOJ的一场Monthly,里面有一道和SteinerTree很相近的一道题,之后敲了一下,顺便把SteinerTree整理一下。 首先由我们知道的东西引入: 一个图的最小生成树即...
  • cjl3011
  • cjl3011
  • 2013年09月17日 23:48
  • 944

斯坦纳树(Steiner Tree)

1. 什么是斯坦纳树?        斯坦纳树问题是组合优化学科中的一个问题。将指定点集合中的所有点连通,且边权总和最小的生成树称为最小斯坦纳树(Minimal Steiner Tree),...

Steiner tree problem

转自:http://en.wikipedia.org/wiki/Steiner_tree_problem Steiner tree problem The Steiner tree probl...

【模板】斯坦纳树

题目: 斯坦纳树 Time Limit: 1 Sec Memory Limit: 128 MB Description 现在有一个n*m的矩阵,某些元素为0,剩下的元素大于0. 现在你要选...
  • Vmurder
  • Vmurder
  • 2015年06月15日 09:02
  • 1825

WC2008观光游览【BZOJ2595】【斯坦纳树】

WC2008观光游览【BZOJ2595】【斯坦纳树】神奇的解法题目传送点想了解斯坦纳树的戳这其实这种表格的题目还可以写插头DP(•‾̑⌣‾̑•)✧˖° (不会= =|||) 我们忽略刚刚的话题,说...

bzoj 3205: [Apio2013]机器人 斯坦纳树

这道题目应该是比较明显的斯坦纳树吧。        令f[l][r][x][y]表示将编号l~r的机器人合并到(x,y)的最小代价,那么就有转移:       1. f[l][r][x][y]=min...

斯坦纳树[全都floyd+状态dp]

http://endlesscount.blog.163.com/blog/static/821197872012525113427573/ poj3123 这个只有30个节点, 直接flo...
  • jxy859
  • jxy859
  • 2012年09月02日 16:21
  • 1259

斯坦纳树问题及其推广

斯坦纳树问题及其推广 分类: 数学2009-07-12 23:03 710人阅读 评论(0) 收藏 举报 算法网络终端优化工作图形  斯坦纳树问题是组合优化学科中的一个问...
  • pi9nc
  • pi9nc
  • 2013年07月27日 21:27
  • 2254

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

Steiner树

Steiner最小生成树,NP问题,求一个图中包含某k个特定节点时的最小代价树,k较小时可以利用2^k的状压dp解决。 参考 http://endlesscount.blog.163.com/blo...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:斯坦纳树 Steiner Tree
举报原因:
原因补充:

(最多只允许输入30个字)