浅谈欧拉图、半欧拉图(Eulerian graph、semi-Eulerian graph)

本文介绍了欧拉图和半欧拉图的定义,包括无向图和有向图的情况,并提供了判断它们存在的条件。通过Codeforces的一道题目,展示了欧拉图性质在解决实际问题中的应用,尤其是如何利用欧拉图构造序列并求解最短长度。此外,还讨论了如何调整边的方向以构建欧拉通路或回路,以及如何在实际问题中确定是否需要构建欧拉图或半欧拉图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

做了这么多题目,遇到要用欧拉图性质的不算多。但觉得还是有点用,有必要做点笔记。


先看看欧拉图和半欧拉图的定义:

欧拉回路:图G中经过每条边一次并且仅一次的回路称作欧拉回路

欧拉通路:图G中经过每条边一次并且仅一次的路径称作欧拉通路。


那么

欧拉图(Eulerian graph)指的就是存在欧拉回路的图。

半欧拉图(semi-Eulerian graph)指的是存在欧拉通路但不存在欧拉回路的图。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值