7.1.2 C# 中的函数式数据结构

本文介绍如何在C#中实现不可变数据结构,通过一个具体的Rect类示例展示了如何确保类的属性不可变,并提供了创建对象副本的方法,便于在不改变原有对象的情况下进行属性更新。

7.1.2 C# 中的函数式数据结构

 

我们曾经用 C# 实现过几个函数式不可变数据类型,比如 FuncList 或元组。在 C# 中,是通过以特殊方式写类来实现的,最重要的是,所有属性必须是不可变的,这是通过使用只读字段,或者通过声明的属性具有私有的 setter,且只在类的构造函数中设置来实现。在清单 7.3 中,我们使用第一种方法实现似于类清单 7.1 中 Rect 类型的类。

 

清单 7.3 不可变 Rect 类型 (C#)

 

public sealed class Rect { 

  private readonly float left, top,width, height;

  public float Left { get { returnleft; } }      |  返回只读属性的值

  public float Top { get { return top;} }      |

  public float Width { get { returnwidth; } }  |

  public float Height { get { returnheight; } } |

 

  public Rect(float left, float top,float width, float height) {  <-- 构造矩形

    this.left = left;this.top = top; 

    this.width = width;this.height = height; 

}

 

  public Rect WithLeft(float left){   [1]

    return new Rect(left,this.Top, this.Width, this.Height);  <-- 创建对象的副本

  } 

  // TODO: WithTop, WithWidth andWithHeight 

}

 

这个类包含的字段,在构造函数中初始化时,使用了只读修饰符进行标记。这是用 C# 实现真正不可变类或值的正确方法;在 C# 3.0中,也可以使用自动属性与私有的 setter,代码更简短,那样的话,我们的责任是确保仅在构造函数中设置属性。

WithLeft 方法[1]中更有意义的部分是,它能够用修改后的 Left 属性值创建对象的副本。我们省略掉其他属性,因为,类似的方法很容易实现;这些方法对应于我们前面看过的 F# 记录的 with 关键字。可以看到相似性:

 

let moved = { rc with Left = 10.0f } 

var moved = rc.WithLeft(10.0f);

 

最重要的一点是,我们不必显式读取 Rect 类的所有属性,只要列出更改过的属性。这种语法非常优雅,即使我们想要修改属性不止一个:

 

var moved =rc.WithLeft(10.0f).WithTop(10.0f);

 

正如我们在此示例中所看到的,我们经常需要同时设置两个相关的属性。如果经常发生这种情况,更方便的方法是,添加新的方法以创建一个副本,并修改所有相关的属性。在我们的示例中,我们也可以添加方法WithPosition 和 WithSize,因为,它们表示的操作很常用;如果每次单独改变创建的对象不是正确的状态,而只有组合的操作才表示有效的状态变化,这种情况下也是必需创建的。

对于 F# 的记录类型,我们现在就需要了解这些,在第九章我们还要再讨论 .NET 中的函数式数据类型。在下一节,我们将开始讨论一个大型示例程序,这是本章的重点,会涉及表示程序数据的通常方法。

 

屋顶关键点检测数据集 一、基础信息 • 数据集名称:屋顶关键点检测数据集 • 图片数量: 训练集:864张图片 验证集:45张图片 测试集:37张图片 总计:946张图片 • 训练集:864张图片 • 验证集:45张图片 • 测试集:37张图片 • 总计:946张图片 • 分类类别: 类别0 • 类别0 • 标注格式: YOLO格式,包含关键点坐标标签,适用于关键点检测任务。 • YOLO格式,包含关键点坐标标签,适用于关键点检测任务。 • 数据格式:图片文件,来源于相关领域数据。 二、适用场景 • 建筑与航拍图像分析:用于检测屋顶结构的关键点,支持建筑评估、航拍数据处理等应用。 • 计算机视觉研究:适用于关键点检测算法的开发与测试,推动AI在特定领域的应用。 • 工业自动化:集成至自动化系统中,用于物体定位和结构分析。 • 学术与教育:作为关键点检测任务的教学数据集,帮助学生和研究人员理解相关技术。 三、数据集优势 • 单类别专注:数据集专注于单一类别(类别0)的关键点检测,便于模型学习和优化。 • 高质量标注:标注数据采用YOLO格式,关键点坐标精确,确保模型训练准确性。 • 数据量充足:提供近千张图片,覆盖多种场景,增强模型的鲁棒性。 • 即插即用:兼容YOLO等主流深度学习框架,可直接用于模型训练,节省预处理时间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值