使用LFM(Latent factor model)隐语义模型进行Top-N推荐

原创 2013年08月12日 14:30:27
最近在拜读项亮博士的《推荐系统实践》,系统的学习一下推荐系统的相关知识。今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结。

隐语义模型LFM和LSI,LDA,Topic Model其实都属于隐含语义分析技术,是一类概念,他们在本质上是相通的,都是找出潜在的主题或分类。这些技术一开始都是在文本挖掘领域中提出来的,近些年它们也被不断应用到其他领域中,并得到了不错的应用效果。比如,在推荐系统中它能够基于用户的行为对item进行自动聚类,也就是把item划分到不同类别/主题,这些主题/类别可以理解为用户的兴趣。

对于一个用户来说,他们可能有不同的兴趣。就以作者举的豆瓣书单的例子来说,用户A会关注数学,历史,计算机方面的书,用户B喜欢机器学习,编程语言,离散数学方面的书, 用户C喜欢大师Knuth, Jiawei Han等人的著作。那我们在推荐的时候,肯定是向用户推荐他感兴趣的类别下的图书。那么前提是我们要对所有item(图书)进行分类。那如何分呢?大家注意到没有,分类标准这个东西是因人而异的,每个用户的想法都不一样。拿B用户来说,他喜欢的三个类别其实都可以算作是计算机方面的书籍,也就是说B的分类粒度要比A小;拿离散数学来讲,他既可以算作数学,也可当做计算机方面的类别,也就是说有些item不能简单的将其划归到确定的单一类别;拿C用户来说,他倾向的是书的作者,只看某几个特定作者的书,那么跟A,B相比它的分类角度就完全不同了。

显然我们不能靠由单个人(编辑)或team的主观想法建立起来的分类标准对整个平台用户喜好进行标准化。

此外我们还需要注意的两个问题:
  1. 我们在可见的用户书单中归结出3个类别,不等于该用户就只喜欢这3类,对其他类别的书就一点兴趣也没有。也就是说,我们需要了解用户对于所有类别的兴趣度。
  2. 对于一个给定的类来说,我们需要确定这个类中每本书属于该类别的权重。权重有助于我们确定该推荐哪些书给用户。
下面我们就来看看LFM是如何解决上面的问题的?对于一个给定的用户行为数据集(数据集包含的是所有的user, 所有的item,以及每个user有过行为的item列表),使用LFM对其建模后,我们可以得到如下图所示的模型:(假设数据集中有3个user, 4个item, LFM建模的分类数为4)
 
R矩阵是user-item矩阵,矩阵值Rij表示的是user i 对item j的兴趣度,这正是我们要求的值。对于一个user来说,当计算出他对所有item的兴趣度后,就可以进行排序并作出推荐。LFM算法从数据集中抽取出若干主题,作为user和item之间连接的桥梁,将R矩阵表示为P矩阵和Q矩阵相乘。其中P矩阵是user-class矩阵,矩阵值Pij表示的是user i对class j的兴趣度;Q矩阵式class-item矩阵,矩阵值Qij表示的是item j在class i中的权重,权重越高越能作为该类的代表。所以LFM根据如下公式来计算用户U对物品I的兴趣度
我们发现使用LFM后, 
  1. 我们不需要关心分类的角度,结果都是基于用户行为统计自动聚类的,全凭数据自己说了算。
  2. 不需要关心分类粒度的问题,通过设置LFM的最终分类数就可控制粒度,分类数越大,粒度约细。
  3. 对于一个item,并不是明确的划分到某一类,而是计算其属于每一类的概率,是一种标准的软分类。
  4. 对于一个user,我们可以得到他对于每一类的兴趣度,而不是只关心可见列表中的那几个类。
  5. 对于每一个class,我们可以得到类中每个item的权重,越能代表这个类的item,权重越高。

那么,接下去的问题就是如何计算矩阵P和矩阵Q中参数值。一般做法就是最优化损失函数来求参数。在定义损失函数之前,我们需要准备一下数据集并对兴趣度的取值做一说明。


数据集应该包含所有的user和他们有过行为的(也就是喜欢)的item。所有的这些item构成了一个item全集。对于每个user来说,我们把他有过行为的item称为正样本,规定兴趣度RUI=1,此外我们还需要从item全集中随机抽样,选取与正样本数量相当的样本作为负样本,规定兴趣度为RUI=0。因此,兴趣的取值范围为[0,1]。


采样之后原有的数据集得到扩充,得到一个新的user-item集K={(U,I)},其中如果(U,I)是正样本,则RUI=1,否则RUI=0。损失函数如下所示:
上式中的是用来防止过拟合的正则化项,λ需要根据具体应用场景反复实验得到。损失函数的优化使用随机梯度下降算法:
  1. 通过求参数PUK和QKI的偏导确定最快的下降方向;

  1. 迭代计算不断优化参数(迭代次数事先人为设置),直到参数收敛。


其中,α是学习速率,α越大,迭代下降的越快。α和λ一样,也需要根据实际的应用场景反复实验得到。本书中,作者在MovieLens数据集上进行实验,他取分类数F=100,α=0.02,λ=0.01。
               【注意】:书中在上面四个式子中都缺少了


综上所述,执行LFM需要:
  1. 根据数据集初始化P和Q矩阵(这是我暂时没有弄懂的地方,这个初始化过程到底是怎么样进行的,还恳请各位童鞋予以赐教。)
  2. 确定4个参数:分类数F,迭代次数N,学习速率α,正则化参数λ。

LFM的伪代码可以表示如下:

def LFM(user_items, F, N, alpha, lambda):
	#初始化P,Q矩阵
	[P, Q] = InitModel(user_items, F)
	#开始迭代
	For step in range(0, N):
		#从数据集中依次取出user以及该user喜欢的iterms集
		for user, items in user_item.iterms():
			#随机抽样,为user抽取与items数量相当的负样本,并将正负样本合并,用于优化计算
			samples = RandSelectNegativeSamples(items)
			#依次获取item和user对该item的兴趣度
			for item, rui in samples.items():
				#根据当前参数计算误差
				eui = eui - Predict(user, item)
				#优化参数
				for f in range(0, F):
					P[user][f] += alpha * (eui * Q[f][item] - lambda * P[user][f])
					Q[f][item] += alpha * (eui * P[user][f] - lambda * Q[f][item])
		#每次迭代完后,都要降低学习速率。一开始的时候由于离最优值相差甚远,因此快速下降;
		#当优化到一定程度后,就需要放慢学习速率,慢慢的接近最优值。
		alpha *= 0.9

本人对书中的伪代码追加了注释,有不对的地方还请指正。


当估算出P和Q矩阵后,我们就可以使用(*)式计算用户U对各个item的兴趣度值,并将兴趣度值最高的N个iterm(即TOP N)推荐给用户。

总结来说,LFM具有成熟的理论基础,它是一个纯种的学习算法,通过最优化理论来优化指定的参数,建立最优的模型。

推荐系统中隐语义模型

使用LFM(Latent factor model)隐语义模型进行Top-N推荐 最近在拜读项亮博士的《推荐系统实践》,系统的学习一下推荐系统的相关知识。今天学习了其中的隐语义模型在Top-N推荐中...
  • AriesSurfer
  • AriesSurfer
  • 2015年02月04日 12:02
  • 9439

推荐系统之隐语义模型(LFM)

一 基本概念 LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型。那这种模型跟ItemCF或UserCF有什么不同呢?这里可以做一个对比: 对于Us...
  • sinat_33741547
  • sinat_33741547
  • 2016年10月30日 23:58
  • 5670

从主题模型(Topic Model)到隐语义模型(Latent Factor Model)

在项亮的《推荐系统实战》中曾提到:隐语义模型(以下简称LFM)的算法最早是在文本挖掘领域被提出来的,用于找出文本的隐含语义。而在文本挖掘领域,主题模型(以下简称TM)正是用于找出文本中的隐含主题。由此...
  • m0_37788308
  • m0_37788308
  • 2017年10月23日 10:34
  • 272

海量数据挖掘MMDS week4: 推荐系统之隐语义模型latent semantic analysis

海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之隐语义模型latent...
  • pipisorry
  • pipisorry
  • 2015年10月19日 22:35
  • 1410

隐语义模型(LFM)

该算法最早在文本领域被提出,用于找到文本的隐含语义。核心思想是通过隐含特征(latent  factor)联系用户兴趣和物品(item)。是基于机器学习的方法。找出潜在的主题和分类。基于用户的行为对i...
  • u014570574
  • u014570574
  • 2016年05月20日 10:25
  • 1737

推荐系统(三) —— 利用用户行为数据 —— 隐语义模型

推荐系统(三) —— 利用用户行为数据 —— 隐语义模型
  • lipengcn
  • lipengcn
  • 2015年11月25日 20:39
  • 2307

使用LFM(Latent factor model)隐语义模型进行Top-N推荐

原文地址:http://blog.csdn.net/harryhuang1990/article/details/9924377 最近在拜读项亮博士的《推荐系统实践》,系统的学习一下推荐系统的相关知...
  • litoupu
  • litoupu
  • 2013年11月25日 14:37
  • 25148

推荐算法——隐语义模型

LFM(latent factor model) 通过隐含特征联系用户兴趣和物品。 计算用户u对物品i的兴趣: preference(u,i)=rui=pTuqi=∑f=1Fpu,kqi,kpr...
  • u011060119
  • u011060119
  • 2017年07月22日 18:46
  • 191

隐语义模型

隐语义模型(LFM)核心思想:通过隐含特征联系用户兴趣和物品。我的理解是LFM 就是对物品基于权重进行分类,并同时依据用户对每一类的兴趣来确定用户感兴趣的物品。看似是把一个大问题分解成了两个小问题。基...
  • Apassionata
  • Apassionata
  • 2016年08月11日 14:41
  • 936

《推荐系统实践》阅读笔记三 LFM模型、图模型、slop one和SVD算法

2.5 隐语义模型 LFM(latent factor model)。表示一类模型,有很多经典的模型,如:LSI、pLSA、LDA和topic model等。 LFM优势: 面对商品分类的...
  • china1000
  • china1000
  • 2013年10月17日 00:04
  • 3677
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:使用LFM(Latent factor model)隐语义模型进行Top-N推荐
举报原因:
原因补充:

(最多只允许输入30个字)