欧拉回路(佛罗莱算法)

原创 2016年08月28日 23:17:58

若图G中存在这样一条路径,使得它恰通过G中每条边一次,则称该路径为欧拉路径。若该路径是一个圈,则称为欧拉(Euler)回路
具有欧拉回路的图称为欧拉图(简称E图)。具有欧拉路径但不具有欧拉回路的图称为半欧拉图。
以下判断基于此图的基图连通。
无向图存在欧拉回路的充要条件
一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图。
有向图存在欧拉回路的充要条件
一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图。
混合图存在欧拉回路条件
要判断一个混合图G(V,E)(既有有向边又有无向边)是欧拉图,方法如下:
假设有一张图有向图G',在不论方向的情况下它与G同构。并且G'包含了G的所有有向边。那么如果存在一个图G'使得G'存在欧拉回路,那么G就存在欧拉回路。
求欧拉回路的思路:
循环的找到出发点。从某个节点开始,然后查出一个从这个出发回到这个点的环路径。这种方法不保证每个边都被遍历。如果有某个点的边没有被遍历就让这个点为起点,这条边为起始边,把它和当前的环衔接上。这样直至所有的边都被遍历。这样,整个图就被连接到一起了。
具体步骤:
1。如果此时与该点无相连的点,那么就加入路径中
2。如果该点有相连的点,那么就加入队列之中,遍历这些点,直到没有相连的点。
3。处理当前的点,删除走过的这条边,并在其相邻的点上进行同样的操作,并把删除的点加入到路径中去。
Fleury算法模板如下:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<limits.h>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#define maxn 1005
using namespace std;
int n,m;//n个顶点,m条边 
int path[maxn][maxn];
stack<int>t;
void dfs(int x)
{
	t.push(x);
	for(int i=1;i<=n;i++)
	{
		if(path[x][i])
		{
			path[x][i]=path[i][x]=0;//删除此边 
			dfs(i);
			break; 
		}
	}
}
void  Fleury(int x)
{
	t.push(x);
	while(!t.empty())
	{
		int b=0;
		for(int i=1;i<=n;i++)
		{
			if(path[t.top()][i])
			{
				b=1;
				break;
			}
		}
		if(!b)
		{
			printf("%d ",t.top());
			t.pop();
		}
		else
		{
			int y=t.top();
			t.pop();
			dfs(y);
		}
	}
	printf("\n");
 } 
int  main()
{
	int i,j,x,y;
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		while(!t.empty())
		   t.pop();
		memset(path,0,sizeof(path));
		for(i=1;i<=m;i++)
		{
			scanf("%d%d",&x,&y);
			path[x][y]=path[y][x]=1;//无向图建边 
		}
		int num=0,start=1;
		for(i=1;i<=n;i++)
		{
			int degree=0;
			for(j=1;j<=n;j++)
			    if(path[i][j])
			        degree++;
			if(degree%2==1)
			{
				start=i;//如果存在奇数顶点,则从奇数顶点出发,否则从1出发 
			    num++;
			}
		 }
		if(num==0 || num==2)
		   Fleury(start);
		else
		    printf("No Euler Path\n"); 
	}
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Fleury (弗罗莱) 算法通俗解释

Fleury (弗罗莱) 算法通俗解释 1.定义 2.举例说明 图2为连通图G,现利用Fleury算法求它的欧拉通路。(注意区分:欧拉通路、欧拉回路) 其中一种欧拉通路如下:4 5 8 7 6...

Fleury(佛罗莱)算法求欧拉回路的学习

欧拉回路:简单来说,就是经过图G的每条边一次且仅一次,回到出发点的路径就叫欧拉回路; 我就直接上模板了。。。。 View Code 1 #include 2 #include 3...
  • zjsyhjh
  • zjsyhjh
  • 2014年05月26日 17:53
  • 858

弗罗莱(fleury)算法-欧拉回路生成算法

弗罗莱算法是生成欧拉回路的算法之一,今天在
  • zjx409
  • zjx409
  • 2014年04月08日 22:57
  • 4181

【DayDayUp】【算法_图_欧拉回路_之一_Fleury (弗罗莱) 算法】

【坚持不能偷懒】 通过图(无向图或有向图)中所有边且每边仅通过一次通路称为欧拉通路,相应的回路称为欧拉回路。具有欧拉回路的图称为欧拉图(Euler Graph),具有欧拉通路而无欧拉回路的图称为...

弗罗莱(Fleury)算法 欧拉(Euler)通路/回路

转载地址:http://blog.csdn.net/zyy617532750/article/details/50981888 1、基本概念: (1)欧拉图的基本概念: ...

弗罗莱(Fleury)算法 欧拉(Euler)通路/回路

1、基本概念: (1)欧拉图的基本概念: 欧拉通路 (欧拉迹):通过图中每条边一次且仅一次,并且过每一顶点的通路。 欧拉回路 (欧拉闭迹):通过图中每条边一次且仅一次,并且过每一顶点的回路。...

弗罗莱(Fleury)算法,求欧拉(Euler)通路/回路

1、基本概念: (1)定义 欧拉通路 (欧拉迹)—通过图中每条边一次且仅一次,并且过每一顶点的通路。 欧拉回路 (欧拉闭迹)—通过图中每条边一次且仅一次,并且过每一顶点的回路。 欧拉图—存在欧...

构造欧拉图与找欧拉回路的算法

  • 2010年10月31日 12:58
  • 264KB
  • 下载

hihocoder 1181欧拉路·二(求欧拉路Fleury(佛罗莱)算法)

题目链接 #1181 : 欧拉路·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个...
  • fouzhe
  • fouzhe
  • 2016年10月05日 15:55
  • 393
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:欧拉回路(佛罗莱算法)
举报原因:
原因补充:

(最多只允许输入30个字)