我的2014--众人皆醉我独醒

在大学的这两年里,作者通过担任宣传委员、参加.net培训夏令营、加入中文百科创新学习基地以及自学CSDN等途径,不断提升自我。尽管面对团队规模小的压力,作者依然坚持学习并充分利用时间,探索视频制作、编程、网站编辑等工作,并在CSDN发现了新的学习资源。

        转眼间大学两年过去了,舍友们还在撸游戏,有的也找到了另一半的归属。我是我宿舍唯一一个不玩电脑游戏的人,当然,不是不玩游戏就代表着成绩很好,也不代表玩游戏就不好,但意味着我比我舍友多出很多时间,这些时间我到底都做了些什么。

          在班上因为是当宣传委员,做一些视频或PPT或海报是难免的,这些对我来说是一种陌生的东西,第一个学期我利用课余的时间学习了会声会影,PS,PPT制作,基本可以做出一些勉强看得过去的东西来。

         暑假来临,我报了一个.net培训的夏令营,一个多月的假期基本在夏令营中度过。其中学会了不少大学课堂上学不到的东西。其中的MFC开发我认为最有用处。收假回到学校,还要做一些培训布置的作业,每两个星期检查一次,做不好得罚款。

下半年我加入了“中文百科创新学习基地”,来了我才发现,原来我们12级的只有两位,另一位是别班的还叫不出名字来(/哎,惭愧),其他新成员全是低年级的(/哎,羞愧),差点想马上走人的冲动,最后也只能厚着脸皮留下来虚心学习。刚开始在编辑组主要是学习有关网站的”编辑工作“,一步步来嘛。由于课程学习还比较多,所以很少有时间去基地学习,这也是一种无奈啊。

       后来我发现了一个“新大陆”,一个很好的自学的资源--CSDN,里面有很多资源,也有很多大神,更多“宝藏”有待细细挖掘。


内容概要:本文系统介绍了基于因果推断的智能经营模型体系,重点阐述了从传统信贷经营v1.0时代向智能信贷v2.0时代的演进。传统体系受限于人工策略、目标分散和效率低下,而v2.0体系以客户长期生命价值(LTV)为统一优化目标,依托高维特征自动化处理和因果推断技术,实现经营决策的精准化与自动化迭代。文章深入剖析了相关关系与因果关系的区别,指出传统机器学习在决策场景中的局限性,并引入因果推断解决反事实预估问题。通过自研Mono-CFR等算法,构建额度、价格、还款方式、权益等多维度因果模型,实现个体层面的决策效果预估,在控制风险的前提下提升人均盈利与放款规模。未来方向聚焦技术迭代与多经营手段的动态联合优化。; 适合人群:具备一定机器学习基础,从事金融科技、信贷产品、数据科学等相关领域的研发与策略人员,尤其是关注智能决策与因果推断应用的从业者;; 使用场景及目标:①解决信贷经营中“额度越高风险越低”等违反直觉的数据悖论;②实现个体维度的精准定价、定额与权益发放;③量化经营动作的增量效果,优化客户全生命周期价值(LTV);④推动从单点优化到多干预联合决策的智能化升级; 阅读建议:此资源强调因果推断在实际业务中的建模与落地,建议结合文中提到的额度、价格、权益等案例,深入理解反事实推理、混淆因子处理与多任务因果模型的设计思路,并关注其在A/B实验不足场景下的优势。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值