poj 3680 Intervals(离散化+费用流)

题目链接:http://poj.org/problem?id=3680

题意: 给定n个带权开区间,选择其中一些区间出来,使得权值最大并且在任意被选区间的有效点上重叠层数不超过k。

解题思路:

这题可以用费用流解决,先讲讲如何建图,再分析算法的正确性。

将所有区间的前后两个端点离散化为n个不重复的点,然后建图:

 源点s编号0, 区间端点编号1到n, 汇点t编号n+1.

       从s到1号点有边(s, 1, k, 0)

       从i号节点到i+1号节点有边(i, i+1, INF, 0)

       从n号节点到t有边(n, t, k, 0)

       如果区间(a,b)的端点a和b分别是离散化后的第i和第j个点,那么有边(i, j, 1, -w)注意:这里花费取原本区间权值的负数,因为这样我们最后求得的最小费用就是最大权值和的负数.

最终算出的最小费用(负值),就是最大费用的相反数。

这里摘自一片牛人的博客:

 下面分析下该构图为什么能得到解?

       从源点流出了k个流量,那么这k个流量可以选择从i到i+1这种普通边流(因为该边的容量无限大),但是如果此时在i到i+1之间有另外一条区间边时(区间边费用为负值), 由于我们求最小费用,所有k个流量中的一个肯定会沿着这条cost为负的区间边流. 这是如果我们算最小费用,那么就会把该区间边的最小费用算上去一次.

       同理如果i到i+1点之间除了普通边外,同时还有2条区间边(区间边cost都为负值),那么明显k个流量肯定先分出两个1的流量分别走这两条区间边,剩下的才去走那些个普通边(因为普通边cost0,区间边cost为负).

       如果i到i+1除了普通边1条外,还有8条权值不同的区间边,且k=3,那么我们肯定是选权值最小的那3条区间边去走,而不会去走另外权值大些的路.


这里的感觉就像是自来水管一样,分流然后汇合,保证了管道内的流量不超过k

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<map>
#include<queue>
using namespace std;

const int maxn = 405;
const int inf = 0x3f3f3f3f;
struct Edge
{
	int from,to,flow,cost,next;

	Edge(){}
	Edge(int f,int t,int fl,int co):from(f),to(t),flow(fl),cost(co){} 
};
struct MCMF
{
	int n,s,t;
	vector<Edge> edge;
	vector<int> G[maxn];
	int dis[maxn];
	int pre[maxn];
	bool inq[maxn];

	void init(int n,int s,int t)
	{
		this->n = n, this->s = s, this->t = t;
		edge.clear();
		for(int i = 0; i <= n; i++) G[i].clear();
	}

	void addedge(int u,int v,int flow,int cost)
	{
		edge.push_back(Edge(u,v,flow,cost));
		edge.push_back(Edge(v,u,0,-cost));
		int m = edge.size();
		G[u].push_back(m-2);
		G[v].push_back(m-1);
	}

	int spfa()
	{
		queue<int> q;
		memset(dis,inf,sizeof(dis));
		memset(pre,-1,sizeof(pre));
		memset(inq,false,sizeof(inq));
		dis[s] = 0;
		inq[s] = true;
		q.push(s);
		while(!q.empty())
		{
			int u = q.front();
			q.pop();
			inq[u] = false;
			for(int i = 0; i < G[u].size(); i++)
			{
				int v = edge[G[u][i]].to;
				if(dis[v] > dis[u] + edge[G[u][i]].cost && edge[G[u][i]].flow > 0)
				{
					dis[v] = dis[u] + edge[G[u][i]].cost;
					pre[v] = G[u][i];
					if(inq[v] == false)
					{
						inq[v] = true;
						q.push(v);
					}
				}
			}
		}
		return dis[t] != inf;
	}

	int solve()
	{
		int mincost = 0,minflow;
		while(spfa())
		{
			minflow = inf;
			for(int i = pre[t]; i != -1; i = pre[edge[i].from])
				minflow = min(minflow,edge[i].flow);
			for(int i = pre[t]; i != -1; i = pre[edge[i].from])
			{
				edge[i].flow -= minflow;
				edge[i^1].flow += minflow;
			}
			mincost += dis[t] * minflow;
		}
		return mincost;
	}
}MM;

int x[maxn],y[maxn],w[maxn];//从1开始标号,记录每个区间  
int p[maxn];//离散化后的每个点  
int num;//离散化去重后的点数目  

int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int n,k;  
        num = 0;  
        scanf("%d%d",&n,&k);  
        for(int i = 1; i <= n; ++i)  
        {  
            scanf("%d%d%d",&x[i],&y[i],&w[i]);  
            p[num++] = x[i];  
            p[num++] = y[i];  
        }  
        sort(p,p + num);  
        num = unique(p,p + num) - p;  
        map<int,int> mp;//坐标与编号的映射  
        for(int i = 0;i < num; ++i) mp[p[i]] = i + 1;  
  
        int src=0, dst=num+1;  
		MM.init(num+2,src,dst);
		MM.addedge(src,1,k,0);  
		for(int i=1;i<=num;++i) MM.addedge(i,i+1,inf,0);  
        for(int i=1;i<=n;++i)  
        {  
			MM.addedge(mp[x[i]],mp[y[i]],1,-w[i]);  
        }  
		printf("%d\n",-MM.solve());
	}
	return 0;
}




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值