g2o中 EdgeSE3Expmap类型Jacobian的计算

位姿优化的时候,两个顶点的类型是SE3,涉及到的误差雅克比是pose error对pose的求导,里面有些知识值得注意,故记录下来。 前期准备 重新翻看Ethan Eade的《Lie Groups for 2D and 3D Transformations》,发现他的文档早已有相关推导。比如针对两个SO3乘积对其中一个求导: 比如同理两个SE3乘积对其中一个求导: 上面这两个...
阅读(1238) 评论(2)

ubuntu 安装使用多版本opencv

ubuntu 16.04 安装了ROS kinetic,而ROS自带的是opencv3.1。之前有一个程序opencv2和opencv3效果不一样,因此决定再装一个opencv2。...
阅读(1126) 评论(1)

单目视觉里程计 mono vo

之前为了改动svo进行了一些不同的尝试,两个视频demo在下面。效果1视频链接: https://v.qq.com/x/page/d0383rpx3ap.html在不同数据集上测试 效果2视频链接: https://v.qq.com/x/page/k03832nd7pu.htmlvo2对着天花板,用于室内机器人 vo2在euroc数据集上,无人机从起点飞出到飞回原点,可看到轨迹中起始点闭...
阅读(9795) 评论(15)

Homography 知多少?

在ORB-SLAM初始化的时候,作者提到,如果场景是平面,或者近似平面,或者低视差时,我们能应用单应性矩阵(homography),这三种情形在我应用SVO的过程中颇有同感,打破了我对HH矩阵的固有映像,即只能用于平面或近似平面。但是我不知道如何去具体分析这里面的误差,比如不共面的情况时,应用HH矩阵将一个图像坐标从图像1投影到图像2时,它会落在图像哪个位置?和实际位置的误差该怎么计算?误差会有多...
阅读(6421) 评论(5)

DSO 中的Windowed Optimization

DSO中除了完善直接法估计位姿的误差模型外(加入了仿射亮度变换,光度标定,depth优化),另一个核心就是像okvis一样使用sliding window来优化位姿,Engel也专门用了一节来介绍它。然而对于初次接触sliding window的初学者来说,这部分论文里使用的众多专业术语,如“First Estimate Jacobians”,“Marginalization”,“Schur co...
阅读(4794) 评论(18)

isam2 优化pose graph

gtsam里面只有一个isam2的例子,那个例子里面没有添加位姿闭环约束,主要是视觉BA。而通过闭环优化位姿的gtsam程序主要是Pose2SLAMExample.cpp等,这种用法类似g2o,不能体现isam2的增量优化特性,因此我仿照Pose2SLAMExample里的数据写了一个增量优化位姿的isam2程序,用法上还是有isam2的特性,特别注意graph里的只有isam2优化以后新加的约束...
阅读(3109) 评论(5)

DSO 初探

这两天视觉SLAM界的大新闻就是Direct Sparse Odometry(DSO)开源了,小伙伴们都迫不及待的赶紧上手撩了一下,论文下载地址请戳。为了紧跟学术前沿,我们此篇文章将作为学习DSO的一个开端,和大家一起来前排感受下Prof. Cremers 门派大弟子Engel博士的新绝学。文章将分为四部分,DSO的安装,DSO在公共数据集上的运行,DSO在自己数据集上的运行,DSO在实时摄像头下...
阅读(11611) 评论(48)

SLAM中的marginalization 和 Schur complement

在视觉SLAM的很多论文中,会大量或者偶尔出现marginalization这个词(翻译为边缘化),有的论文是特地要用它,比如sliding window slam [2], okvis [3], dso [4]。而有的论文是简单的提到,比如g2o[1],orbslam。因此,很有必要对这个概念进行了解。...
阅读(8998) 评论(9)

ORB_SLAM : semi dense code

2016.9.20 update:添加论文中部分公式推导。 2016.9.9 update:完善部分代码 2016.9.7:初始博客单目摄像头的Semi Dense 听起来很美,比如有人想用这个结合机器人导航,有人用它和三维物体识别相结合,用来同时提升定位和识别率。最近对单目semi dense也有了一些想法,想先按着ORB_SLAM作者论文实现下semi dense,练练手:《Probabi...
阅读(5705) 评论(6)

SVO 代码笔记

SVO代码中有很多细节值得注意...
阅读(7429) 评论(23)

ubuntu 14.04 安装qq 2015

主要来自龍井团队的开发:论坛教程内含下载地址我的总结: 在上面链接中下载WineQQ7.8-20151109-Longene.deb 如果之前安装了其他了版本qq,可以先卸载: step1.找到安装版本qq的文件夹,比如/opt/longene/qq step2.打开里面的qq.sh文件,查看你安装版本的qq名package_name = wine-qq7.8-longeneteam step...
阅读(10451) 评论(6)

Monocular slam 中的理论基础(2)

在知道了相机的轨迹以后,使用三角法就能计算某个点的深度,在Hartley的《Multiple view Geometry》一书中 第10章、第12章都是讲的这个,这里只讲解线性求解方法。...
阅读(6498) 评论(14)

Monocular slam 的理论基础(1)

前言  LSD-SLAM和ORB-SLAM的出现,使得单目slam最近成为了研究热点。单目SLAM一般处理流程包括track和map两部分。所谓的track是用来估计相机的位姿。而map部分就是计算pixel的深度,如果相机的位姿有了,就可以通过三角法(triangulation)确定pixel的深度,把这些计算好深度的pixel放到map里就重建出了三维环境。 主要内容  在单目SLAM的学习过...
阅读(13590) 评论(11)

svo: semi-direct visual odometry 论文解析

SVO 从名字来看,是半直接视觉里程计,所谓半直接是指通过对图像中的特征点图像块进行直接匹配来获取相机位姿,而不像直接匹配法那样对整个图像使用直接匹配。整幅图像的直接匹配法常见于RGBD传感器,因为RGBD传感器能获取整幅图像的深度。   虽然semi-direct方法使用了特征,但它的思路主要还是通过direct method来获取位姿,这和feature-method不一样。同时,semi-d...
阅读(13134) 评论(26)

lie group and computer vision : 李群、李代数在计算机视觉中的应用

在多视角几何中,特别是在一些恢复相机运动轨迹的模型中,我们需要将相机的旋转和平移表示出来。通常情况下,我们都是在欧几里得空间中用R和t来进行相应的运算得到相机轨迹。然而,在很多论文中,作者们却喜欢用Lie algebra se(3)、so(3) 以及 Lie group SE(3)、SO(3) 之类的表示。紧接着,出现了很多术语,比如twist, tangent space,也出现了一些运算,比如e...
阅读(13746) 评论(25)
50条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:565377次
    • 积分:4976
    • 等级:
    • 排名:第6306名
    • 原创:50篇
    • 转载:0篇
    • 译文:0篇
    • 评论:770条
    关于博主
    目前主要学习机器人导航与定位算法: 基本掌握filter-slam,graph-slam框架,熟悉单目tracking部分的direct method 和 feature method. 熟悉单目mapping部分的深度估计,正在努力学习semi-dense map。有计算机视觉、机器学习、神经网络理论基础。希望结识更多致力于解决无迹导航和移动机器人开发的同道中人,共同学习和进步。
    最新评论