知行合一

厚积薄发,格物致知。简单点,做事的动机简单点。

排序:
默认
按更新时间
按访问量

g2o中 EdgeSE3Expmap类型Jacobian的计算

位姿优化的时候,两个顶点的类型是SE3,涉及到的误差雅克比是pose error对pose的求导,里面有些知识值得注意,故记录下来。 前期准备 重新翻看Ethan Eade的《Lie Groups for 2D and 3D Transformations》,发现他的文档早已有相关推导。比如针对两...

2017-08-29 16:15:02

阅读数:6418

评论数:12

ubuntu 安装使用多版本opencv

ubuntu 16.04 安装了ROS kinetic,而ROS自带的是opencv3.1。之前有一个程序opencv2和opencv3效果不一样,因此决定再装一个opencv2。

2017-07-24 16:17:20

阅读数:4735

评论数:3

单目视觉里程计 mono vo

之前为了改动svo进行了一些不同的尝试,两个视频demo在下面。效果1视频链接: https://v.qq.com/x/page/d0383rpx3ap.html在不同数据集上测试 效果2视频链接: https://v.qq.com/x/page/k03832nd7pu.htmlvo2对着天...

2017-03-12 23:18:19

阅读数:14796

评论数:16

Homography 知多少?

在ORB-SLAM初始化的时候,作者提到,如果场景是平面,或者近似平面,或者低视差时,我们能应用单应性矩阵(homography),这三种情形在我应用SVO的过程中颇有同感,打破了我对HH矩阵的固有映像,即只能用于平面或近似平面。但是我不知道如何去具体分析这里面的误差,比如不共面的情况时,应用HH...

2017-01-13 14:39:45

阅读数:17249

评论数:14

DSO 中的Windowed Optimization

DSO中除了完善直接法估计位姿的误差模型外(加入了仿射亮度变换,光度标定,depth优化),另一个核心就是像okvis一样使用sliding window来优化位姿,Engel也专门用了一节来介绍它。然而对于初次接触sliding window的初学者来说,这部分论文里使用的众多专业术语,如“Fi...

2016-12-26 11:16:53

阅读数:11197

评论数:28

isam2 优化pose graph

gtsam里面只有一个isam2的例子,那个例子里面没有添加位姿闭环约束,主要是视觉BA。而通过闭环优化位姿的gtsam程序主要是Pose2SLAMExample.cpp等,这种用法类似g2o,不能体现isam2的增量优化特性,因此我仿照Pose2SLAMExample里的数据写了一个增量优化位姿...

2016-11-28 21:51:51

阅读数:6648

评论数:6

DSO 初探

这两天视觉SLAM界的大新闻就是Direct Sparse Odometry(DSO)开源了,小伙伴们都迫不及待的赶紧上手撩了一下,论文下载地址请戳。为了紧跟学术前沿,我们此篇文章将作为学习DSO的一个开端,和大家一起来前排感受下Prof. Cremers 门派大弟子Engel博士的新绝学。文章将...

2016-11-15 21:52:14

阅读数:21569

评论数:51

SLAM中的marginalization 和 Schur complement

在视觉SLAM的很多论文中,会大量或者偶尔出现marginalization这个词(翻译为边缘化),有的论文是特地要用它,比如sliding window slam [2], okvis [3], dso [4]。而有的论文是简单的提到,比如g2o[1],orbslam。因此,很有必要对这个概念进...

2016-10-15 23:07:30

阅读数:19700

评论数:9

ORB_SLAM : semi dense code

2016.9.20 update:添加论文中部分公式推导。 2016.9.9 update:完善部分代码 2016.9.7:初始博客单目摄像头的Semi Dense 听起来很美,比如有人想用这个结合机器人导航,有人用它和三维物体识别相结合,用来同时提升定位和识别率。最近对单目semi den...

2016-09-07 23:11:11

阅读数:9097

评论数:8

SVO 代码笔记

SVO代码中有很多细节值得注意

2016-08-03 23:06:06

阅读数:12841

评论数:23

ubuntu 14.04 安装qq 2015

主要来自龍井团队的开发:论坛教程内含下载地址我的总结: 在上面链接中下载WineQQ7.8-20151109-Longene.deb 如果之前安装了其他了版本qq,可以先卸载: step1.找到安装版本qq的文件夹,比如/opt/longene/qq step2.打开里面的qq.sh文件,查看...

2016-06-02 17:06:39

阅读数:13619

评论数:10

Monocular slam 中的理论基础(2)

在知道了相机的轨迹以后,使用三角法就能计算某个点的深度,在Hartley的《Multiple view Geometry》一书中 第10章、第12章都是讲的这个,这里只讲解线性求解方法。

2016-04-11 09:01:57

阅读数:10879

评论数:15

Monocular slam 的理论基础(1)

前言  LSD-SLAM和ORB-SLAM的出现,使得单目slam最近成为了研究热点。单目SLAM一般处理流程包括track和map两部分。所谓的track是用来估计相机的位姿。而map部分就是计算pixel的深度,如果相机的位姿有了,就可以通过三角法(triangulation)确定pixel的...

2016-04-11 09:00:40

阅读数:20449

评论数:12

svo: semi-direct visual odometry 论文解析

SVO 从名字来看,是半直接视觉里程计,所谓半直接是指通过对图像中的特征点图像块进行直接匹配来获取相机位姿,而不像直接匹配法那样对整个图像使用直接匹配。整幅图像的直接匹配法常见于RGBD传感器,因为RGBD传感器能获取整幅图像的深度。   虽然semi-direct方法使用了特征,但它的思路主要...

2016-04-08 15:43:16

阅读数:21503

评论数:28

lie group and computer vision : 李群、李代数在计算机视觉中的应用

在多视角几何中,特别是在一些恢复相机运动轨迹的模型中,我们需要将相机的旋转和平移表示出来。通常情况下,我们都是在欧几里得空间中用R和t来进行相应的运算得到相机轨迹。然而,在很多论文中,作者们却喜欢用Lie algebra se(3)、so(3) 以及 Lie group SE(3)、SO(3) 之...

2016-01-05 14:18:29

阅读数:21274

评论数:26

graph slam tutorial : g2o 的使用

下载安装g2o,怎么安装,注意安装那些库,并用优化前后的图简单介绍介绍。        g2o作为一个外接程序库在自己程序里怎么使用呢?如果不熟悉cmake的话,可以点击这里(看文章中在工程中查找和使用其他程序库的方法)以及这里。        所以要把g2o程序库文件放到自己的程序里,我们要...

2015-10-12 11:06:30

阅读数:25198

评论数:18

graph slam tutorial :从推导到应用3

为了更好地理解graph based slam的过程,本文以二维平面的激光SLAM为例子,先简单介绍如何根据传感器信息构建图,即图优化的前端(front-end)。然后再针对上篇博客的疑问,结合matlab程序,分析图优化的后端(back-end)。

2015-10-12 11:05:25

阅读数:13211

评论数:29

graph slam tutorial :从推导到应用2

在上一部分中通过一个例子大致了解了graph based slam的优化过程。在本篇博客中将提升一个层次,对图优化的求解过程进行推导。由于博文关注的在图构建好以后,如何调整机器人位姿使误差最下。因此,本文主要涉及的是图优化的后端(back-end)。        我们已经知道图优化问题转变成了一...

2015-10-12 11:04:22

阅读数:13718

评论数:22

graph slam tutorial : 从推导到应用1

SLAM问题的处理方法主要分为滤波和图优化两类。滤波的方法中常见的是扩展卡尔曼滤波、粒子滤波、信息滤波等,熟悉滤波思想的同学应该容易知道这类SLAM问题是递增的、实时的处理数据并矫正机器人位姿。比如基于粒子滤波的SLAM的处理思路是假设机器人知道当前时刻的位姿,利用编码器或者IMU之类的惯性导航又...

2015-10-12 11:03:58

阅读数:24821

评论数:27

航迹推演(Odometry)

做机器人底层程序的时候,经常用到航迹推演(Odometry),无论是定位导航还是普通的方向控制。航迹推演中除了对机器人位姿进行估计,另一个很重要的关系是移动机器人前进速度、转向角速度与左轮速度、右轮速度之间的转换。

2015-07-23 15:44:40

阅读数:14154

评论数:6

提示
确定要删除当前文章?
取消 删除