知行合一

厚积薄发,格物致知。简单点,做事的动机简单点。

高斯过程简析

前言 SLAM 方向对 Gaussian Process (GP)的需求不大,但这两年有好几篇 IROS,ICRA 的论文用高斯过程来拟合轨迹,拟合误差模型等,因此这篇笔记对高斯过程概念和原理进行简单梳理,理清楚 GP 是怎么来的,以及怎么用它。如果想更进一步系统学习下,推荐 MIT 出版的 Ga...

2019-03-18 15:41:13

阅读数 845

评论数 4

2d Laser 和 Odomter 内外参数标定工具原理及使用方法

前言 两轮差速轮式机器人可以基于码盘数据和两轮间距以及车轮半径进行航迹推演,得到机器人的轨迹。激光雷达也可以利用 icp 等算法计算出两时刻间机器人的相对运动量。因此,可以利用两者数据进行融合定位,本博客根据 Censi 2013 年发表在 TRO 上的论文,对如何标定里程计内参数 ( 轮子半径,...

2019-03-15 12:26:07

阅读数 1192

评论数 24

2d Laser 和 camera 标定工具原理及使用方法

2d 激光和相机之间之间的标定早在 04 年就出了成熟的论文和方法,去年 17 年 ICCV, IROS,今年 IROS 等依然还有论文产出。具体的论文列表可以参考我的《论文阅读整理》博客,这篇博客主要讲述 04 年方法的原理以及代码的实现, 代码将开放,在自己机器人上采集了多次数据进行标定,标定...

2018-12-14 14:28:44

阅读数 3153

评论数 28

基于平面 marker 的 Bundle Adjustmet

marker BA 公式推导 李代数求导基础 有四种方式进行李代数的求导: gtsam作者笔记里的推导方式,strasdat博士论文里的推导方式,TUM kerl硕士论文里的推导方式,最后就是barfoot的state esitamtion for robotics一书中的推导...

2018-12-08 18:02:02

阅读数 1842

评论数 0

Kalibr 标定双目内外参数以及 IMU 外参数

本文记录使用 Kalibr 标定双目相机内外参数以及和IMU之间外参数的标定过程. 采用的硬件设备为小觅的双目VIO设备( MyntEYE), 并且默认你已经有了ROS的知识基础. 标定 stereo-imu 之前, 需要知道双目的内外参数, 所以先进行双目内外参数的标定. 材料准备 安装Kali...

2018-10-31 20:08:12

阅读数 3234

评论数 13

SLAM 论文阅读和分类整理

前言:以前读论文,都是靠脑子硬记,哪个实验室,谁,哪一年在什么会议上发了一篇关于什么的论文。当需要回溯的时候,每篇论文能给出个大概,不具体,找起来也麻烦,以后就在这个 List 里分类整理已经读过的论文。之前读的,以及后续的一些新的有意义的论文都会慢慢补充进来。 VIO 初始化和外参数标定 该...

2018-09-26 16:35:58

阅读数 7887

评论数 19

g2o中 EdgeSE3Expmap类型Jacobian的计算

位姿优化的时候,两个顶点的类型是SE3,涉及到的误差雅克比是pose error对pose的求导,里面有些知识值得注意,故记录下来。 前期准备 重新翻看Ethan Eade的《Lie Groups for 2D and 3D Transformations》,发现他的文档早已有相关推导。比如针对两...

2017-08-29 16:15:02

阅读数 9054

评论数 12

ubuntu 安装使用多版本opencv

ubuntu 16.04 安装了ROS kinetic,而ROS自带的是opencv3.1。之前有一个程序opencv2和opencv3效果不一样,因此决定再装一个opencv2。

2017-07-24 16:17:20

阅读数 7364

评论数 4

单目视觉里程计 mono vo

之前为了改动svo进行了一些不同的尝试,两个视频demo在下面。效果1视频链接: https://v.qq.com/x/page/d0383rpx3ap.html在不同数据集上测试 效果2视频链接: https://v.qq.com/x/page/k03832nd7pu.htmlvo2对着天...

2017-03-12 23:18:19

阅读数 18671

评论数 19

Homography 知多少?

在ORB-SLAM初始化的时候,作者提到,如果场景是平面,或者近似平面,或者低视差时,我们能应用单应性矩阵(homography),这三种情形在我应用SVO的过程中颇有同感,打破了我对HH矩阵的固有映像,即只能用于平面或近似平面。但是我不知道如何去具体分析这里面的误差,比如不共面的情况时,应用HH...

2017-01-13 14:39:45

阅读数 24715

评论数 15

DSO 中的Windowed Optimization

DSO中除了完善直接法估计位姿的误差模型外(加入了仿射亮度变换,光度标定,depth优化),另一个核心就是像okvis一样使用sliding window来优化位姿,Engel也专门用了一节来介绍它。然而对于初次接触sliding window的初学者来说,这部分论文里使用的众多专业术语,如“Fi...

2016-12-26 11:16:53

阅读数 15806

评论数 30

isam2 优化pose graph

gtsam里面只有一个isam2的例子,那个例子里面没有添加位姿闭环约束,主要是视觉BA。而通过闭环优化位姿的gtsam程序主要是Pose2SLAMExample.cpp等,这种用法类似g2o,不能体现isam2的增量优化特性,因此我仿照Pose2SLAMExample里的数据写了一个增量优化位姿...

2016-11-28 21:51:51

阅读数 9375

评论数 9

DSO 初探

这两天视觉SLAM界的大新闻就是Direct Sparse Odometry(DSO)开源了,小伙伴们都迫不及待的赶紧上手撩了一下,论文下载地址请戳。为了紧跟学术前沿,我们此篇文章将作为学习DSO的一个开端,和大家一起来前排感受下Prof. Cremers 门派大弟子Engel博士的新绝学。文章将...

2016-11-15 21:52:14

阅读数 28136

评论数 53

SLAM中的marginalization 和 Schur complement

在视觉SLAM的很多论文中,会大量或者偶尔出现marginalization这个词(翻译为边缘化),有的论文是特地要用它,比如sliding window slam [2], okvis [3], dso [4]。而有的论文是简单的提到,比如g2o[1],orbslam。因此,很有必要对这个概念进...

2016-10-15 23:07:30

阅读数 27655

评论数 9

ORB_SLAM : semi dense code

2016.9.20 update:添加论文中部分公式推导。 2016.9.9 update:完善部分代码 2016.9.7:初始博客单目摄像头的Semi Dense 听起来很美,比如有人想用这个结合机器人导航,有人用它和三维物体识别相结合,用来同时提升定位和识别率。最近对单目semi den...

2016-09-07 23:11:11

阅读数 11650

评论数 14

SVO 代码笔记

SVO代码中有很多细节值得注意

2016-08-03 23:06:06

阅读数 16365

评论数 24

ubuntu 14.04 安装qq 2015

主要来自龍井团队的开发:论坛教程内含下载地址我的总结: 在上面链接中下载WineQQ7.8-20151109-Longene.deb 如果之前安装了其他了版本qq,可以先卸载: step1.找到安装版本qq的文件夹,比如/opt/longene/qq step2.打开里面的qq.sh文件,查看...

2016-06-02 17:06:39

阅读数 15001

评论数 10

Monocular slam 中的理论基础(2)

在知道了相机的轨迹以后,使用三角法就能计算某个点的深度,在Hartley的《Multiple view Geometry》一书中 第10章、第12章都是讲的这个,这里只讲解线性求解方法。

2016-04-11 09:01:57

阅读数 13472

评论数 16

Monocular slam 的理论基础(1)

前言  LSD-SLAM和ORB-SLAM的出现,使得单目slam最近成为了研究热点。单目SLAM一般处理流程包括track和map两部分。所谓的track是用来估计相机的位姿。而map部分就是计算pixel的深度,如果相机的位姿有了,就可以通过三角法(triangulation)确定pixel的...

2016-04-11 09:00:40

阅读数 25567

评论数 13

svo: semi-direct visual odometry 论文解析

SVO 从名字来看,是半直接视觉里程计,所谓半直接是指通过对图像中的特征点图像块进行直接匹配来获取相机位姿,而不像直接匹配法那样对整个图像使用直接匹配。整幅图像的直接匹配法常见于RGBD传感器,因为RGBD传感器能获取整幅图像的深度。   虽然semi-direct方法使用了特征,但它的思路主要...

2016-04-08 15:43:16

阅读数 28216

评论数 30

提示
确定要删除当前文章?
取消 删除