这个在数学上叫做梅氏砝码问题,其叙述如下: 若有n个砝码,重量分别为M1,M2,……,Mn,且能称出从1到(M1+M2+……+Mn)的所有重量,则再加一个砝码,重量为Mn+1=(M1+M2+……+Mn)*2+1,则这n+1个砝码能称出从1到 (M1+M2+……+Mn+Mn+1)的所有重量。 取n=1,M1=1,则可以依此类推出所有砝码的重量为: 1,3,9,27,81,243,…… ---------------------------------------- 砝码重量应为1、3、9、27。 2=3-1 4=3+1 5=9-1-3 7=9+1-3 11=9+3-1 14=27-1-3-9。即一边放27克的砝码,另一边放1、3、9克三个砝码和所称物品。 40=1+3+9+27。