- 博客(1185)
- 资源 (7)
- 收藏
- 关注
原创 ROS2 中的轻量级、自动化、受控回放
这篇文章描述了一种在 ROS2 中实现受控重播器的轻量级方法。用以测试中将现象重新播放一遍,以实现调参或故障定位的目的。所有源代码都可以在这里找到。该帖子也可在此处获得。
2023-09-30 13:13:29
63
原创 ROS2 库包设置和使用 Catch2 进行单元测试
本文的目的是了解如何在 ROS2 中创建库,以供其他 ROS2 包使用。除此之外,本文还介绍了如何使用 catch2 框架编写单元测试。本文的第1 部分将详细介绍如何创建库包。第 2 部分将介绍 ROS2 软件包如何利用创建的库。
2023-09-30 13:02:11
97
原创 ROS2 从头开始:第6部分 - ROS2 中的 DDS,用于可靠的机器人通信
在这篇文章中,我们将重点关注 ROS 2的通信栈DDS,其中这是介于管理节点通信与控制节点通信环节,是上位机决策体系与下位机的控制体系实现指令-执行-反馈的关键实现机制。
2023-09-29 15:26:12
125
原创 【图像处理】SIFT角点特征提取原理
提起在OpenCV中的特征点提取,可以列出Harris,可以使用SIFT算法或SURF算法来检测图像中的角特征点。本篇围绕sift的特征点提取,只是管中窥豹,而更多的特征点算法有:
2023-09-29 12:01:45
327
原创 图像处理: 马赛克艺术
技术洞察力是马赛克创作和欣赏的关键,而艺术的技术方面需要特别强调。马赛克还具有重要的风格、宗教和文化方面,它在西方艺术中发挥了重要作用,并出现在其他文化中。
2023-09-28 22:45:14
159
原创 关于ROS 2内部接口
关于ROS的接口,需要一些信息来源,以满足客户对基本概念的形成;本篇来自ROS2的官方网站,对于形成对ROS的内部接口的理解,以及进一步开发具有参考意义。
2023-09-28 18:35:19
58
原创 NLP的不同研究领域和最新发展的概述
作为理解、生成和处理自然语言文本的有效方法,自然语言处理 (NLP) 的研究近年来迅速普及并被广泛采用。鉴于NLP的快速发展,获得该领域的概述和维护它是困难的。这篇博文旨在提供NLP不同研究领域的结构化概述,并分析该领域的最新趋势。
2023-09-28 18:10:02
203
原创 ROS2 从头开始:第3部分 — 创建自定义消息(.msg 和 .srv)和 Turtlebot3 服务节点的实践指南
C自定义消息定义文件是 ROS 生态系统的重要组成部分,因为它们允许您定义自定义数据结构,用于表示可以根据应用程序的规范和设计在节点之间交换的信息。如果ROS提供的内置消息类型不能满足您的要求,或者您希望使用内置消息类型不支持的特定数据格式,这非常有用。
2023-09-28 10:15:08
41
原创 ROS2 从头开始:第2部分 - 包、发布者和订阅者
在这篇文章中,我们将重点关注 ROS 2 包、发布者和订阅者。具体来说,我们将涵盖以下主题:1. 什么是 ROS 2 包以及为什么它很重要?2.如何使用ros2 pkg create命令创建ROS 2包?3. 如何使用该rclcpp库在ROS 2中创建发布者和订阅者?
2023-09-27 12:51:39
51
原创 【NLP的Python库(04/4)】:Flair
Flair是一个现代的NLP库。从文本处理到文档语义,支持所有核心 NLP 任务。Flair使用现代转换器神经网络模型来完成多项任务,并结合了其他Python库,可以选择特定的模型。其清晰的API和注释文本的数据结构,以及多语言支持,使其成为NLP项目的良好候选者。
2023-09-27 12:34:42
215
原创 【NLP的python库(03/4) 】: 全面概述
Python 对自然语言处理库有丰富的支持。从文本处理、标记化文本并确定其引理开始,到句法分析、解析文本并分配句法角色,再到语义处理,例如识别命名实体、情感分析和文档分类,一切都由至少一个库提供。那么,你从哪里开始呢?
2023-09-27 12:20:28
212
原创 NLP 项目:维基百科文章爬虫和分类 - 语料库阅读器
自然语言处理是机器学习和人工智能的一个迷人领域。这篇博客文章启动了一个具体的 NLP 项目,涉及使用维基百科文章进行聚类、分类和知识提取。灵感和一般方法源自《Applied Text Analysis with Python》一书。
2023-09-27 11:47:55
452
原创 ChatGPT 在机器学习中的应用
大家都知道ChatGPT。它在解释机器学习和深度学习概念方面也非常高效,至少到 2021 年是这样。在这篇文章中,我想展示它的人工智能知识。我们来测试一下吧。
2023-09-27 11:29:28
531
原创 目标检测如何演变:从区域提议和 Haar 级联到零样本技术
物体检测算法的发展已经取得了长足的进步,从早期的计算机视觉开始,通过深度学习达到了很高的准确度。在这篇文章中,我们将研究这些算法的发展阶段以及现代目标检测系统中使用的主要方法。
2023-09-27 10:20:20
293
原创 使用 Python 函数callable和isinstance的意义
在这篇博客中,我们将探讨两个python函数:1callable中的函数及其有趣的应用程序。该callable函数用于检查对象是否可调用,这意味着它可以作为函数调用。2isinstance这个内置函数允许我们比较两种不同的数据类型并确定它们是否相同。
2023-09-27 02:18:03
78
原创 协调信号:利用 FFT 的强大功能来解码波形文件
我已经很长时间没有编程了,但我从来没有机会读取二进制文件。我主要处理涉及文本数据的文件。上个月,我决定研究一个特定的二进制文件以产生一些有趣的东西。作为团队的一部分,我们有这个小型项目的前端和后端。
2023-09-26 20:01:45
49
原创 用于自然语言处理的 Python:理解文本数据
Python是一种功能强大的编程语言,在自然语言处理(NLP)领域获得了极大的普及。凭借其丰富的库集,Python 为处理和分析文本数据提供了一个全面的生态系统。在本文中,我们将介绍 Python for NLP 的一些基础知识,重点是理解文本数据和实现代码来执行各种 NLP 任务。
2023-09-26 19:46:30
207
原创 可变形注意力转换器综述
关于注意力机制,关于transformer等存在大量的研究和尝试,这些研究有的被沙汰,有的被采用并发扬光大,本篇对可变卷积、可变局部注意力机制和全局注意力机制做详细解释。因为这些模型规模巨大,环节琐碎,需要一点点积累才能掌握全局。本文不力求面向宏大叙事,而是就注意力机制的变革进行有限的注解。
2023-09-26 17:03:41
78
原创 【halcon特征点专题系列】01/4--Harris角点检测
本文是Halcon内部特征点的系列文章,本文主要介绍Harrs原理的角点检测,在后续文章中,我们将继续介绍其它原理的特征点算法: corner_response、points_foerstner、points_lepetitpoints_sojka。
2023-09-26 12:28:42
90
3
原创 ROS2 从头开始:第 5 部分 - 并发、执行器和回调组
让我们回到基础。并发意味着系统或软件可以同时运行许多任务。例如,在单核 CPU 机器上,可以通过使用线程来实现并发。本文探讨了 ROS2 中与并发相关的一些关键概念和接口,包括执行器和回调组。我们已经看到这些接口如何帮助提高 ROS2 系统的可扩展性和实时性能。
2023-09-26 10:45:16
49
原创 谷歌BERT:从自然语言处理(NLP)初学者到高级的综合指南
BERT(来自变压器的双向编码器表示)是由Google开发的一种革命性的自然语言处理(NLP)模型。它改变了语言理解任务的格局,使机器能够理解语言中的上下文和细微差别。在本博客中,我们将带您踏上从BERT的基础概念到高级概念的旅程,并提供解释,示例和代码片段。
2023-09-25 19:12:23
257
2
原创 ROS2 从头开始:第 4 部分 - 使用 ROS2 组合构建强大的机器人系统
组件编程是软件规模庞大后,有限的程序个体不能满足系统的动态扩张的系统设计方案。组件编程的首要用途就是计算机操作系统。而ROS2也是操作系统,动态扩大或缩减是必然存在的,因此需要组件实现。
2023-09-25 10:31:54
96
原创 ROS2 从头开始:第 7/8回 - 使用 QoS 配置在 ROS 2 中实现可靠通信
在机器人操作系统 (ROS) 2 系统中,服务质量 (QoS)用于指定各种策略,这些策略确定如何通过 ROS 2 主题或服务传输和接收消息。QoS 策略允许您优化 ROS 2 系统中节点之间通信的性能和可靠性。这些设置可用于调整 DDS 系统的性能和行为,以满足应用程序的特定需求。
2023-09-25 09:23:23
69
2
原创 Mojo:新AI语言中的7个惊人的Python升级
AI发展是日新月异的,对于新模型的产生,我们不能不给以关注。Mojo就是一种新发布的编程语言,专为AI开发人员制作,由Modular制作,Modular是一家由Swift的原始创建者Chris Lattner创立的公司。
2023-09-24 12:52:40
66
1
原创 PyTorch 模型性能分析和优化 — 第 2 部分
这是关于分析和优化在GPU上运行的PyTorch模型的系列文章的第二部分。在我们的第一篇文章中,我们展示了使用 PyTorch Profiler 和TensorBoard迭代分析和优化PyTorch模型的过程和巨大潜力。
2023-09-24 11:27:22
59
原创 PyTorch 模型性能分析和优化 — 第 1 部分
这篇文章的重点将是GPU上的PyTorch培训。更具体地说,我们将专注于 PyTorch 的内置性能分析器 PyTorch Profiler,以及查看其结果的方法之一,即 PyTorch Profiler TensorBoard 插件。
2023-09-24 06:55:34
427
原创 使用 PyTorch 的计算机视觉简介 (6/6)
本文主要介绍CNN中在pytorch的实现,其中MobileNet 网络,数据集来源,以及训练过程,模型生成和存储,模型调入等。
2023-09-24 06:34:43
109
原创 ROS2 从头开始:第 08/8回 - 使用 ROS2 生命周期节点简化机器人软件组件管理
在这篇文章中,我们将仔细研究 ROS2 生命周期节点、它们的好处,以及如何使用它们来管理机器人系统中不同软件组件的生命周期。我还将提供一些如何实现 ROS2 生命周期节点的示例。在这篇文章结束时,您将更好地了解 ROS2 生命周期节点以及它们如何简化机器人软件组件的管理。
2023-09-23 12:43:47
331
原创 使用 PyTorch 的计算机视觉简介 (4/6)
在本单元中,我们将了解卷积神经网络(CNN),它是专门为计算机视觉设计的。 多层卷积层允许我们从图像中提取某些图像模式,池化层,以及在CIFAR-10上的表现。
2023-09-23 12:12:12
105
原创 如何在不失去理智的情况下调试 TensorFlow 训练程序
关于tensorflow的调试,是一个难啃的骨头,除了要有耐力,还需要方法;本文假设您是一个很有耐力的开发者,为您提供一些方法;这些方法也许不容易驾驭,但是依然强调您只要有耐力,没有不能攻克的难题。
2023-09-23 11:21:50
99
原创 tkinter的Canvas组件,绘画基本知识
画布组件是Tkinter画图的最重要组件。画布对象是几何绘制、动画绘制的不二选项,本文专门对画布Canvas进行详细描述,并配以适当代码支持。
2023-09-23 10:05:32
56
原创 使用 PyTorch 的计算机视觉简介 (5/6)
本文主要介绍CNN中在pytorch的实现,其中VGG16网络,数据集来源,以及训练过程,模型生成和存储,模型调入等。
2023-09-23 08:12:43
255
原创 K-最近邻算法
KNN算法是一个分类算法,基本数学模型是距离模型。K-最近邻是一种超级简单的监督学习算法。它可以应用于分类和回归问题。虽然它是在 1950 年代引入的,但今天仍在使用。然而如何实现,本文将给出具体描述。
2023-09-22 17:30:18
112
原创 使用烧瓶的简单电子商务API
让我们试一试烧瓶(Flask)这个模型框架,这个应用程序可让您管理和扩展您的云端业务;它允许管理人员浏览和计算商店的总销售额并从在线商店 - 服装。
2023-09-22 13:35:31
44
原创 【在Ubuntu部署Docker项目】— PROJECT#1
让我们深入了解 Docker。用docker构建web服务器。我们正在计划开发JavaScript API,建立MySQL数据库,并创建一个 PHP 网站使用 API 服务。Php + Node.js + Mysql — DockerSeries — Episode#1
2023-09-22 09:52:45
333
1
原创 使用 PyTorch 的计算机视觉简介 (3/6)
在本单元中,我们将了解卷积神经网络(CNN),它是专门为计算机视觉设计的。卷积层允许我们从图像中提取某些图像模式,以便最终分类器基于这些特征。
2023-09-21 10:27:46
380
3
原创 使用 PyTorch 的计算机视觉简介 (2/6)
在本单元中,我们从最简单的图像分类方法开始——一个全连接的神经网络,也称为感知器。我们将回顾一下 PyTorch 中定义神经网络的方式,以及训练算法的工作原理。
2023-09-21 10:18:18
554
1
原创 行为树的基本概念和C++库
行为树是计算机科学、机器人技术、控制系统和视频游戏中使用的计划执行的数学模型。它们以模块化方式描述一组有限任务之间的切换。他们的优势来自于他们能够创建由简单任务组成的非常复杂的任务,而不用担心简单任务是如何实现的。行为树与分层状态机有一些相似之处关键区别在于行为的主要构建块是任务而不是状态。它易于人类理解,使得行为树不易出错,并且在游戏开发者社区中非常受欢迎。行为树已被证明可以推广其他几种控制架构。
2023-09-21 08:56:58
31
原创 可分离卷积的基本概念
任何看过MobileNet架构的人无疑都会遇到可分离卷积的概念。但是那是什么,它与普通卷积有何不同?可分离卷积有两种主要类型:空间可分离卷积和深度可分离卷积。
2023-09-20 13:16:53
50
1
原创 用于设计 CNN 的 7 种不同卷积
最近对CNN架构的研究包括许多不同的卷积变体,这让我在阅读这些论文时感到困惑。我认为通过一些更流行的卷积变体的精确定义,效果和用例(在计算机视觉和深度学习中)是值得的。这些变体旨在保存参数计数、增强推理并利用目标问题的某些特定特征。
2023-09-20 13:09:04
416
1
python下基于QT5的围棋软件
2023-09-28
使用AffNet和HardNet进行图像匹配
2023-08-14
将文件夹内的所有图片修改成统一尺寸
2022-06-05
MFC下用COM实现自动仪表
2011-01-20
一种大图像菜单的实现
2010-11-19
自制作COM组件的实现和调用
2009-11-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人