- 博客(2144)
- 资源 (7)
- 收藏
- 关注
原创 自编码器入门
在本文中,我们将讨论自编码器.自编码器是一种特殊的神经网络架构,基本原理是通过压缩来学习重建输入数据。它们在特定领域有很多应用,例如异常检测、聚类和特征重建。阅读本文后,您将了解到:1 什么是自编码器以及它的作用. 2 构成自编码的架构结构. 3 如何在 Python 中实现自编码器并训练二元分类器。
2026-02-01 17:55:43
195
原创 高级概率知识1:大数定律
高维数据变得非常重要。然而,高维空间与我们熟悉的二维和三维空间有很大不同。在d维空间中随机生成n个点,每个坐标都是均值为零、方差为1的高斯分布。当d足够大时,所有点对之间的距离以高概率基本上相同。此外,d维单位球(即所有满足|x|≤1的点x的集合)的体积随着维度的增加而趋近于零。高维单位球的体积集中在它的表面附近,也集中在它的赤道附近。这些性质具有重要的影响,我们将对此进行考虑。
2026-01-18 23:14:06
1163
原创 自监督学习及其应用:【1/2】图像篇
过去十年,人工智能领域的研究和开发呈爆炸式增长,尤其是在 2012 年 ImageNet 竞赛结果公布之后。研究重点主要集中在监督学习方法上,这些方法需要大量的标记数据来训练系统以用于特定的用例。
2026-01-10 20:48:58
74
原创 图像处理方向的问题总结
我从事图像处理工作二十多年,至始至终有一个感觉,就是手段总是觉得不足,速速扩展数学理论,但是发现数学理论也不足以应对各种问题的局面变化。神经网络深度学习也存在各种各样的短板,最本质的问题都不是神经网络所能揭示的。因而本篇将记录存在的诸多问题和未来研究。
2026-01-02 16:35:25
480
原创 随机变量在代数运算中的误差传播(2/2)
在前文中,我们讲述支配不确定性如何在不同运算中传播的数学规则,并探索量化不确定性的方法。但仅仅考虑随机变量之间相互独立的情形,然而,假如不独立,将有什么变化?本文将继续探讨相关议题。
2025-12-21 21:16:40
947
原创 随机变量在代数运算中的误差传播(1/2)
在本教程中,我们将学习支配不确定性如何在不同运算中传播的数学规则,并探索量化不确定性的方法。我们将通过实际示例演示如何在真实场景中计算不确定性,从简单的算术运算到涉及相关性和高级仿真技术的复杂函数。
2025-12-19 16:42:58
675
原创 威布尔分布:对生存时间数据进行建模
本教程将引导您了解 Weibull 分布的数学基础。您将学习如何从数据中估计其参数,并了解其灵活性如何使其在可靠性分析和生存研究中发挥重要作用。课程结束时,您不仅会理解这种实用分布背后的理论,还会了解何时以及如何将其应用于您自己的生存分析挑战。
2025-12-14 21:06:15
958
原创 什么是拒绝抽样?
拒绝抽样是一种统计方法,它利用一个包络函数从目标分布中生成样本。该包络函数限定了目标分布的密度范围,并允许基于包含目标密度和包络密度的概率准则来接受样本。该技术从目标分布中生成独立样本,并且需要选择合适的包络函数来最大化接受概率并最小化计算效率损失。
2025-12-13 22:13:12
627
原创 矩母函数极其应用(2/2)
在概率分布中,高阶矩的求法是相当困难的。而自然对数e的指数函数通过泰勒展开,与高阶的多项式有着天然的联系。数学家开发了矩生成函数,通过对任意分布的概率空间,首先找出矩生成函数,通过对矩生成函数求导而的到任意阶的矩。避免了复杂的积分运算。
2025-12-07 22:03:00
740
原创 矩母函数极其应用(1/2)
在概率分布中,高阶矩的求法是相当困难的。而自然对数e的指数函数通过泰勒展开,与高阶的多项式有着天然的联系。数学家开发了矩生成函数,通过对任意分布的概率空间,首先找出矩生成函数,通过对矩生成函数求导而的到任意阶的矩。避免了复杂的积分运算。
2025-11-29 15:51:10
827
原创 采样技术及其在 Python 中的实现
关于用python抽样,一般我们用均匀分布抽样,高斯分布抽样,但还有许多分布的抽样如何实现?本文针对此类问题,探讨如何用python去实践。
2025-11-25 21:22:49
580
原创 泊松分布:综合指南
泊松分布用于模拟在固定时间间隔内发生特定数量事件的概率。了解它如何在排队论和交通建模等实际场景中应用。在统计学和数据科学中,泊松分布是模拟固定区间内离散事件的重要工具。这种概率分布以法国数学家西蒙·德尼·泊松的名字命名,有助于分析和预测罕见事件,因此对各个领域的数据从业者都极具价值。
2025-11-20 10:27:53
1050
原创 几何分布:首次成功事件建模(2-2)
本指南涵盖几何分布的数学基础、独特性质及其在实际应用中的价值,尤其适用于处理序贯试验场景的人员。如需复习概率分布,建议参加我们的统计学入门课程。
2025-11-19 22:43:19
922
原创 几何分布:首次成功事件建模(2-1)
本指南涵盖几何分布的数学基础、独特性质及其在实际应用中的价值,尤其适用于处理序贯试验场景的人员。如需复习概率分布,建议参加我们的统计学入门课程。
2025-11-19 22:42:14
1599
1
原创 伯努利分布:完整指南及示例
伯努利分布是统计学和数据科学中的一个基本概念。它以瑞士数学家雅各布·伯努利的名字命名,在概率论中占有重要地位,并且是构建更复杂统计模型的基础——从预测客户行为到开发机器学习算法,无处不在。
2025-11-18 22:10:06
1427
原创 变分方法:平均场近似
变分贝叶斯(VB)方法是一类在统计机器学习领域非常流行的技术。VB 方法允许我们将统计 推断 问题(即根据一个随机变量的值推断另一个随机变量的值)转化为优化 问题(即找到使某个目标函数最小化的参数值)。这种推断-优化对偶性非常强大,因为它允许我们使用最新、最先进的优化算法来解决统计机器学习问题(反之亦然,即使用统计技术来最小化函数)。
2025-11-18 10:52:32
1203
原创 变分自编码器(VAE)的原理方法(二)
与其说z是从q φ (z|x)中采样得到的,我们可以说z是一个“函数” ,它接受 (1)单位高斯分布的样本ϵ、 (2) 均值 ( Mu ) 和(3)方差 ( Var)。因此,权重为θ 的编码器无需生成该分布的参数,因为我们知道对于单位高斯分布,θ 的均值为0,方差为 1。因此p θ (x)、p θ (z)、p θ (x,z)和p θ (x|z)是合理的。数学上,我们需要最大化pθ (x|z)对数似然的期望,其中pθ(x|z)是解码器的输出。一个合理的解释是,这里使用的θ是所讨论分布的相应参数集的通用符号。
2025-11-16 21:23:27
777
原创 变分自编码器(VAE)的原理方法(一)
无论是概率人工智能爱好者、深度学习专家,还是现代人工智能领域的先驱,变分自编码器VAE 都对他们极具吸引力。它的应用范围涵盖数据生成、异常检测以及表征学习等,涉及图像、音频、文本和信号处理等多个领域。基于 VAE 的论文也经常出现在如今的 NeurIPS 会议上。在深入学习 VAE 之前,让我们先来了解一下密度估计。
2025-11-16 20:49:14
1045
原创 GNN应用:网站结构建模(二)
在在一个以互联性为主的数字世界,网页之间的链接不仅仅是超链接,而是定义网站架构、可导航性和信息价值的复杂结构。每个网站都可以表示为一个图表:页面是节点,页面之间的链接是边缘。 分析该网络不仅可以让您了解网站的逻辑结构,还可以优化其在 SEO、可用性和转化方面的性能。
2025-11-11 21:40:10
1054
原创 GNN应用:网站结构建模(一)
在在一个以互联性为主的数字世界,网页之间的链接不仅仅是超链接,而是定义网站架构、可导航性和信息价值的复杂结构。每个网站都可以表示为一个图表:页面是节点,页面之间的链接是边缘。 分析该网络不仅可以让您了解网站的逻辑结构,还可以优化其在 SEO、可用性和转化方面的性能。
2025-11-11 18:03:04
1332
原创 从随机变量到统计模型(二)
软件程序员为了更好地理解人工智能而学习统计学时,常常会被“随机变量”的概念难住。 “随机变量”这个术语对我们大多数人来说并不陌生,但是,深刻领会却未必容易。统计学中的随机变量与软件中使用的变量之间并没有太多共同之处。甚至在我们学习统计学中“随机变量”的含义之前,需要彻底忘却微积分函数的变量以及映射的概念,避免干扰你的认知。
2025-11-09 21:45:00
1292
原创 从随机变量到统计模型(一)
软件程序员为了更好地理解人工智能而学习统计学时,常常会被“随机变量”的概念难住。 “随机变量”这个术语对我们大多数人来说并不陌生,但是,深刻领会却未必容易。统计学中的随机变量与软件中使用的变量之间并没有太多共同之处。甚至在我们学习统计学中“随机变量”的含义之前,需要彻底忘却微积分函数的变量以及映射的概念,避免干扰你的认知。
2025-11-09 17:14:20
1103
原创 使用 Python 和 HuggingFace Transformers 进行对象检测
在本文中,您将了解这种类型的 Transformer 模型。你还将学习如何使用 Python、默认 Transformer 模型和 HuggingFace Transformers 库构建自己的对象检测管道。事实上,这将非常简单,所以让我们一起来看看吧!
2025-11-08 22:07:07
928
2
原创 数据集预处理:规范化和标准化
本文探讨了机器学习中的特征缩放问题。具体而言,我们研究了归一化(最小-最大归一化),它将数据集调整到 [a, b] 区间内。除了归一化之外,我们还讨论了标准化,它将尺度转换为标准差的倍数,从而使各轴在诸如主成分分析 (PCA) 等算法中具有可比性。我们通过逐步 Python 示例来说明我们的推理,其中包括一些使用标准 Scikit-learn 功能的示例。
2025-11-08 20:58:45
1241
原创 混沌理论与 Python 编程
了解混沌,请读詹姆斯·格雷克(James Gleick)的精彩著作《混沌:一门新科学》(Chaos: Making a New Science) ,它让我们领略了混沌的科学原理和美妙之处。理解蝴蝶效应、奇异吸引子、曼德勃罗集等概念。此外,用Python重现书中那些精美的可视化图表也让我们增加参与感,下面将展示其中的一些。
2025-10-31 17:18:58
1258
原创 数据合成:生成伪数据集(二)
在在数据科学和机器学习的当代格局中,数据是开发预测模型和准确分析的基本资源。然而,真实的数据集并不总是可用、完整或可用。数据稀缺、固有偏见或隐私限制等问题通常会导致访问高质量数据变得困难。这就是合成数据概念发挥作用的地方:生成人工数据,旨在模拟真实数据的特征,同时保护隐私和灵活性。
2025-10-26 10:54:01
970
原创 数据合成:生成伪数据集(一)
本指南的目的是概述生成可靠且有用的合成数据的技术。这包括探索概率方法、传统机器学习 (ML) 技术以及大型语言模型 (LLM) 等高级模型的使用。将提供具体的使用示例,以创建用于训练预测模型和其他分析的有用数据集,确保它们符合真实世界数据的典型约束和特征。
2025-10-26 08:33:24
830
原创 强化学习机理【01】:将K臂老虎机问题形式化
在强化学习算法中,多数文章提到k臂老虎机,而k臂老虎机是啥?它的运作机理是什么样子?这种基本的模型需要首先了解。本文将介绍这种机理,并给出python实验和结果。
2025-10-19 11:33:57
1333
原创 scipy的统计学库(4):用rv_histogram类实现随机抽样
除了rv_continuous,还有rv_discrete之外,还有一个概率密度的给出方法,就是rv_histogram。直方图在数值计算中非常之普遍,因此,用直方图表述分布也最常见,本文将介绍rv_histogram。
2025-10-17 22:22:18
808
原创 scipy的统计学库(2):用rv_continuous类计算统计量
本篇是《scipy的统计学库(1):用rv_continuous类实现随机抽样》的续篇,前文讲述如何使用rv_continuous类,本文将进一步介绍 rv_continuous类的统计类参数,和多种分布函数的实现。本文的后续我们讲述离散型统计模块。
2025-10-17 10:40:04
1021
原创 scipy的统计学库(3):用rv_discrete类实现随机抽样
本篇和《scipy的统计学库(1):用rv_continuous类实现随机抽样》是姐妹篇,前者介绍连续随机变量的实现,本篇介绍离散序列构成的概率分布,极其概率空间。以及抽样是如何实现的。两个文章可以相互补充,建议对照着阅读。
2025-10-15 17:12:51
755
原创 scipy的统计学库(1):用rv_continuous类实现随机抽样
在python下实现统计运算,或灵活地设计一些实验对象。我们通常用scipy这个工作库。然而,scipy调用并非易事,这里我们从连续随机变量生成器rv_continuous介绍其调用特点。
2025-10-15 09:18:20
1027
原创 强化学习的历史
强化学习从20世纪50年代就开始,最初只有反复学习和最优控制两条线索。随着研究的深入,逐步演化出各式各样的方法。本篇将叙述这些方法和其演进路线。
2025-08-15 16:14:05
1510
原创 井字游戏的强化学习
为了说明强化学习的一般思想并将其与其他方法进行对比,本文详细地考虑一个例子。就是哪怕是最简单最一般对弈过程中,强化学习实现的机制和原理。
2025-08-10 21:45:09
1020
原创 强化学习概论(1)
强化学习(Reinforcement Learning, RL) 是机器学习的一个分支,目标是让智能体(agent)通过与环境(environment)的交互来学习最优的行为策略(policy),从而最大化某个累积回报(cumulative reward)。其核心思想是通过试错和反馈的机制,找到在每个情境下的最优决策。
2025-08-09 21:16:50
1062
原创 特征值和特征向量的直觉
在本文中,我们将通过简单的类比、清晰的解释和动手示例来揭开特征向量和特征值背后的神秘面纱。让我们一起探讨为什么这些概念在简化复杂数据和发现隐藏的见解方面如此重要。
2025-08-08 19:57:40
1193
2
原创 几个概率分布在机器学习应用示例
在这份快速指南中,我们将介绍最重要的分布——从始终公平的均匀分布,到钟形的正态分布,计数点击的泊松分布,以及二元选择的二项分布。没有复杂的数学,只有清晰的概念、真实的例子,以及为什么它们重要。
2025-08-08 19:50:58
1909
原创 Lipschitz连续函数
在数学分析中,Lipschitz连续性以德国 数学家 鲁道夫·利普希茨 (Rudolf Lipschitz)的名字命名,是函数一致连续性的强形式。直观地说,Lipschitz连续函数的变化速度有限:存在一个实数,使得对于该函数图上的每一对点,连接它们的直线斜率的绝对值不大于该实数;这样的最小边界称为该函数的Lipschitz常数
2025-08-01 19:57:13
1898
林业类数目种类分布的数据集
2024-02-22
实木板表面纹理识别数据集
2024-02-21
Capstone-食物数据集
2024-02-21
关于数据集:食物的热量
2024-02-21
坦克打飞船的完整代码(可执行)
2024-02-16
坦克打飞碟的游戏基础界面实现
2024-02-16
8pygame键盘动画实现
2024-02-15
双曲几何的库geometry-tools库(在python用)
2024-02-10
C++ 中的模型预测控制(012)
2024-02-09
4用C++和matplotlib实现贝塞尔曲线的库
2024-02-09
2用python实现仿射变换的案例
2024-01-27
基于python的线性方程数字解法
2024-01-27
python多进程博客案例
2024-01-27
pygame泡泡碰撞游戏
2023-11-04
python基于pygame库开发的滑雪游戏
2023-11-04
Ceras下cifar10的图像识别深度网络
2023-10-26
小工具:移除目录内部所有空目录
2023-10-23
小工具:将目录中文件按照扩展名整齐归档
2023-10-23
pytorch下多层感知机的实现
2023-10-23
二项分布的字符串自动生成和统计验证
2023-10-22
使用傅里叶变换测量声卡的频率失真
2025-03-16
【双曲几何-0加莱模型】庞加来上半平面模型的Python实现
2024-05-07
OpenGL4.6的GLSL语言规格手册
2024-04-19
【OpenGL高级】刚体绕任意轴旋转
2024-04-19
【OpenGL实践08】现代渲染管线在GLUT和Pygame和Qt.QOpenGLWidget上各自的实现代码
2024-04-19
QOpenGLWidget的三维渲染
2024-04-17
【OpenGL实验】在python、Qt5、pyOpenGL程序的若干要点
2024-04-15
2022年全球气候热点数据集
2024-02-22
强化学习的Q(λ)学习原理资料
2024-03-27
强化学习的Q-Learn算法ppt资源
2024-03-27
使用 python + Qt + OpenGL 的第一步
2024-03-27
使用Python动画粒子的薛定谔波函数(ψ)(完整代码)
2024-03-20
glViewport - 人为干预视口改变和场景
2024-03-10
【OpenGL实现 03】纹理贴图原理和实现
2024-03-08
12pyopenGL静态圆锥方体球体前后遮挡
2024-02-23
11PyopenGL如何将图片贴到表面class03
2024-02-23
1975年卡顿伍德湖研究区湿地P1数字正射校正航空
2024-02-22
大脚怪野外募集报告数据分析
2024-02-22
坦桑尼亚的多多马太阳能测量数据
2024-02-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅