自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2144)
  • 资源 (7)
  • 收藏
  • 关注

原创 自编码器入门

在本文中,我们将讨论自编码器.自编码器是一种特殊的神经网络架构,基本原理是通过压缩来学习重建输入数据。它们在特定领域有很多应用,例如异常检测、聚类和特征重建。阅读本文后,您将了解到:1 什么是自编码器以及它的作用. 2 构成自编码的架构结构. 3 如何在 Python 中实现自编码器并训练二元分类器。

2026-02-01 17:55:43 195

原创 高级概率知识1:大数定律

高维数据变得非常重要。然而,高维空间与我们熟悉的二维和三维空间有很大不同。在d维空间中随机生成n个点,每个坐标都是均值为零、方差为1的高斯分布。当d足够大时,所有点对之间的距离以高概率基本上相同。此外,d维单位球(即所有满足|x|≤1的点x的集合)的体积随着维度的增加而趋近于零。高维单位球的体积集中在它的表面附近,也集中在它的赤道附近。这些性质具有重要的影响,我们将对此进行考虑。

2026-01-18 23:14:06 1163

原创 自监督学习及其应用:【1/2】图像篇

过去十年,人工智能领域的研究和开发呈爆炸式增长,尤其是在 2012 年 ImageNet 竞赛结果公布之后。研究重点主要集中在监督学习方法上,这些方法需要大量的标记数据来训练系统以用于特定的用例。

2026-01-10 20:48:58 74

原创 图像处理方向的问题总结

我从事图像处理工作二十多年,至始至终有一个感觉,就是手段总是觉得不足,速速扩展数学理论,但是发现数学理论也不足以应对各种问题的局面变化。神经网络深度学习也存在各种各样的短板,最本质的问题都不是神经网络所能揭示的。因而本篇将记录存在的诸多问题和未来研究。

2026-01-02 16:35:25 480

原创 随机变量在代数运算中的误差传播(2/2)

在前文中,我们讲述支配不确定性如何在不同运算中传播的数学规则,并探索量化不确定性的方法。但仅仅考虑随机变量之间相互独立的情形,然而,假如不独立,将有什么变化?本文将继续探讨相关议题。

2025-12-21 21:16:40 947

原创 随机变量在代数运算中的误差传播(1/2)

在本教程中,我们将学习支配不确定性如何在不同运算中传播的数学规则,并探索量化不确定性的方法。我们将通过实际示例演示如何在真实场景中计算不确定性,从简单的算术运算到涉及相关性和高级仿真技术的复杂函数。

2025-12-19 16:42:58 675

原创 威布尔分布:对生存时间数据进行建模

本教程将引导您了解 Weibull 分布的数学基础。您将学习如何从数据中估计其参数,并了解其灵活性如何使其在可靠性分析和生存研究中发挥重要作用。课程结束时,您不仅会理解这种实用分布背后的理论,还会了解何时以及如何将其应用于您自己的生存分析挑战。

2025-12-14 21:06:15 958

原创 什么是拒绝抽样?

拒绝抽样是一种统计方法,它利用一个包络函数从目标分布中生成样本。该包络函数限定了目标分布的密度范围,并允许基于包含目标密度和包络密度的概率准则来接受样本。该技术从目标分布中生成独立样本,并且需要选择合适的包络函数来最大化接受概率并最小化计算效率损失。

2025-12-13 22:13:12 627

原创 矩母函数极其应用(2/2)

在概率分布中,高阶矩的求法是相当困难的。而自然对数e的指数函数通过泰勒展开,与高阶的多项式有着天然的联系。数学家开发了矩生成函数,通过对任意分布的概率空间,首先找出矩生成函数,通过对矩生成函数求导而的到任意阶的矩。避免了复杂的积分运算。

2025-12-07 22:03:00 740

原创 矩母函数极其应用(1/2)

在概率分布中,高阶矩的求法是相当困难的。而自然对数e的指数函数通过泰勒展开,与高阶的多项式有着天然的联系。数学家开发了矩生成函数,通过对任意分布的概率空间,首先找出矩生成函数,通过对矩生成函数求导而的到任意阶的矩。避免了复杂的积分运算。

2025-11-29 15:51:10 827

原创 采样技术及其在 Python 中的实现

关于用python抽样,一般我们用均匀分布抽样,高斯分布抽样,但还有许多分布的抽样如何实现?本文针对此类问题,探讨如何用python去实践。

2025-11-25 21:22:49 580

原创 Z 分数:统计标准化完全指南

学习 z 分数的数学基础,探索实用的计算方法,并发现其在统计学和数据科学中的应用。

2025-11-20 18:00:28 1213

原创 泊松分布:综合指南

泊松分布用于模拟在固定时间间隔内发生特定数量事件的概率。了解它如何在排队论和交通建模等实际场景中应用。在统计学和数据科学中,泊松分布是模拟固定区间内离散事件的重要工具。这种概率分布以法国数学家西蒙·德尼·泊松的名字命名,有助于分析和预测罕见事件,因此对各个领域的数据从业者都极具价值。

2025-11-20 10:27:53 1050

原创 几何分布:首次成功事件建模(2-2)

本指南涵盖几何分布的数学基础、独特性质及其在实际应用中的价值,尤其适用于处理序贯试验场景的人员。如需复习概率分布,建议参加我们的统计学入门课程。

2025-11-19 22:43:19 922

原创 几何分布:首次成功事件建模(2-1)

本指南涵盖几何分布的数学基础、独特性质及其在实际应用中的价值,尤其适用于处理序贯试验场景的人员。如需复习概率分布,建议参加我们的统计学入门课程。

2025-11-19 22:42:14 1599 1

原创 伯努利分布:完整指南及示例

伯努利分布是统计学和数据科学中的一个基本概念。它以瑞士数学家雅各布·伯努利的名字命名,在概率论中占有重要地位,并且是构建更复杂统计模型的基础——从预测客户行为到开发机器学习算法,无处不在。

2025-11-18 22:10:06 1427

原创 变分方法:平均场近似

变分贝叶斯(VB)方法是一类在统计机器学习领域非常流行的技术。VB 方法允许我们将统计 推断 问题(即根据一个随机变量的值推断另一个随机变量的值)转化为优化 问题(即找到使某个目标函数最小化的参数值)。这种推断-优化对偶性非常强大,因为它允许我们使用最新、最先进的优化算法来解决统计机器学习问题(反之亦然,即使用统计技术来最小化函数)。

2025-11-18 10:52:32 1203

原创 变分自编码器(VAE)的原理方法(二)

与其说z是从q φ (z|x)中采样得到的,我们可以说z是一个“函数” ,它接受 (1)单位高斯分布的样本ϵ、 (2) 均值 ( Mu ) 和(3)方差 ( Var)。因此,权重为θ 的编码器无需生成该分布的参数,因为我们知道对于单位高斯分布,θ 的均值为0,方差为 1。因此p θ (x)、p θ (z)、p θ (x,z)和p θ (x|z)是合理的。数学上,我们需要最大化pθ (x|z)对数似然的期望,其中pθ(x|z)是解码器的输出。一个合理的解释是,这里使用的θ是所讨论分布的相应参数集的通用符号。

2025-11-16 21:23:27 777

原创 变分自编码器(VAE)的原理方法(一)

无论是概率人工智能爱好者、深度学习专家,还是现代人工智能领域的先驱,变分自编码器VAE 都对他们极具吸引力。它的应用范围涵盖数据生成、异常检测以及表征学习等,涉及图像、音频、文本和信号处理等多个领域。基于 VAE 的论文也经常出现在如今的 NeurIPS 会议上。在深入学习 VAE 之前,让我们先来了解一下密度估计。

2025-11-16 20:49:14 1045

原创 GNN应用:网站结构建模(二)

在在一个以互联性为主的数字世界,网页之间的链接不仅仅是超链接,而是定义网站架构、可导航性和信息价值的复杂结构。每个网站都可以表示为一个图表:页面是节点,页面之间的链接是边缘。 分析该网络不仅可以让您了解网站的逻辑结构,还可以优化其在 SEO、可用性和转化方面的性能。

2025-11-11 21:40:10 1054

原创 GNN应用:网站结构建模(一)

在在一个以互联性为主的数字世界,网页之间的链接不仅仅是超链接,而是定义网站架构、可导航性和信息价值的复杂结构。每个网站都可以表示为一个图表:页面是节点,页面之间的链接是边缘。 分析该网络不仅可以让您了解网站的逻辑结构,还可以优化其在 SEO、可用性和转化方面的性能。

2025-11-11 18:03:04 1332

原创 从随机变量到统计模型(二)

软件程序员为了更好地理解人工智能而学习统计学时,常常会被“随机变量”的概念难住。 “随机变量”这个术语对我们大多数人来说并不陌生,但是,深刻领会却未必容易。统计学中的随机变量与软件中使用的变量之间并没有太多共同之处。甚至在我们学习统计学中“随机变量”的含义之前,需要彻底忘却微积分函数的变量以及映射的概念,避免干扰你的认知。

2025-11-09 21:45:00 1292

原创 从随机变量到统计模型(一)

软件程序员为了更好地理解人工智能而学习统计学时,常常会被“随机变量”的概念难住。 “随机变量”这个术语对我们大多数人来说并不陌生,但是,深刻领会却未必容易。统计学中的随机变量与软件中使用的变量之间并没有太多共同之处。甚至在我们学习统计学中“随机变量”的含义之前,需要彻底忘却微积分函数的变量以及映射的概念,避免干扰你的认知。

2025-11-09 17:14:20 1103

原创 使用 Python 和 HuggingFace Transformers 进行对象检测

在本文中,您将了解这种类型的 Transformer 模型。你还将学习如何使用 Python、默认 Transformer 模型和 HuggingFace Transformers 库构建自己的对象检测管道。事实上,这将非常简单,所以让我们一起来看看吧!

2025-11-08 22:07:07 928 2

原创 数据集预处理:规范化和标准化

本文探讨了机器学习中的特征缩放问题。具体而言,我们研究了归一化(最小-最大归一化),它将数据集调整到 [a, b] 区间内。除了归一化之外,我们还讨论了标准化,它将尺度转换为标准差的倍数,从而使各轴在诸如主成分分析 (PCA) 等算法中具有可比性。我们通过逐步 Python 示例来说明我们的推理,其中包括一些使用标准 Scikit-learn 功能的示例。

2025-11-08 20:58:45 1241

原创 混沌理论与 Python 编程

了解混沌,请读詹姆斯·格雷克(James Gleick)的精彩著作《混沌:一门新科学》(Chaos: Making a New Science) ,它让我们领略了混沌的科学原理和美妙之处。理解蝴蝶效应、奇异吸引子、曼德勃罗集等概念。此外,用Python重现书中那些精美的可视化图表也让我们增加参与感,下面将展示其中的一些。

2025-10-31 17:18:58 1258

原创 AI用于自动化办公指南

这篇博客探讨了人工智能代理是什么,它们如何工作,它们的优势,挑战,以及它们如何塑造下一代智能企业自动化。

2025-10-31 09:38:08 1013

原创 数据合成:生成伪数据集(二)

在在数据科学和机器学习的当代格局中,数据是开发预测模型和准确分析的基本资源。然而,真实的数据集并不总是可用、完整或可用。数据稀缺、固有偏见或隐私限制等问题通常会导致访问高质量数据变得困难。这就是合成数据概念发挥作用的地方:生成人工数据,旨在模拟真实数据的特征,同时保护隐私和灵活性。

2025-10-26 10:54:01 970

原创 数据合成:生成伪数据集(一)

本指南的目的是概述生成可靠且有用的合成数据的技术。这包括探索概率方法、传统机器学习 (ML) 技术以及大型语言模型 (LLM) 等高级模型的使用。将提供具体的使用示例,以创建用于训练预测模型和其他分析的有用数据集,确保它们符合真实世界数据的典型约束和特征。

2025-10-26 08:33:24 830

原创 强化学习机理【01】:将K臂老虎机问题形式化

在强化学习算法中,多数文章提到k臂老虎机,而k臂老虎机是啥?它的运作机理是什么样子?这种基本的模型需要首先了解。本文将介绍这种机理,并给出python实验和结果。

2025-10-19 11:33:57 1333

原创 scipy的统计学库(4):用rv_histogram类实现随机抽样

除了rv_continuous,还有rv_discrete之外,还有一个概率密度的给出方法,就是rv_histogram。直方图在数值计算中非常之普遍,因此,用直方图表述分布也最常见,本文将介绍rv_histogram。

2025-10-17 22:22:18 808

原创 scipy的统计学库(2):用rv_continuous类计算统计量

本篇是《scipy的统计学库(1):用rv_continuous类实现随机抽样》的续篇,前文讲述如何使用rv_continuous类,本文将进一步介绍 rv_continuous类的统计类参数,和多种分布函数的实现。本文的后续我们讲述离散型统计模块。

2025-10-17 10:40:04 1021

原创 scipy的统计学库(3):用rv_discrete类实现随机抽样

本篇和《scipy的统计学库(1):用rv_continuous类实现随机抽样》是姐妹篇,前者介绍连续随机变量的实现,本篇介绍离散序列构成的概率分布,极其概率空间。以及抽样是如何实现的。两个文章可以相互补充,建议对照着阅读。

2025-10-15 17:12:51 755

原创 scipy的统计学库(1):用rv_continuous类实现随机抽样

在python下实现统计运算,或灵活地设计一些实验对象。我们通常用scipy这个工作库。然而,scipy调用并非易事,这里我们从连续随机变量生成器rv_continuous介绍其调用特点。

2025-10-15 09:18:20 1027

原创 强化学习的历史

强化学习从20世纪50年代就开始,最初只有反复学习和最优控制两条线索。随着研究的深入,逐步演化出各式各样的方法。本篇将叙述这些方法和其演进路线。

2025-08-15 16:14:05 1510

原创 井字游戏的强化学习

为了说明强化学习的一般思想并将其与其他方法进行对比,本文详细地考虑一个例子。就是哪怕是最简单最一般对弈过程中,强化学习实现的机制和原理。

2025-08-10 21:45:09 1020

原创 强化学习概论(1)

强化学习(Reinforcement Learning, RL) 是机器学习的一个分支,目标是让智能体(agent)通过与环境(environment)的交互来学习最优的行为策略(policy),从而最大化某个累积回报(cumulative reward)。其核心思想是通过试错和反馈的机制,找到在每个情境下的最优决策。

2025-08-09 21:16:50 1062

原创 特征值和特征向量的直觉

在本文中,我们将通过简单的类比、清晰的解释和动手示例来揭开特征向量和特征值背后的神秘面纱。让我们一起探讨为什么这些概念在简化复杂数据和发现隐藏的见解方面如此重要。

2025-08-08 19:57:40 1193 2

原创 几个概率分布在机器学习应用示例

在这份快速指南中,我们将介绍最重要的分布——从始终公平的均匀分布,到钟形的正态分布,计数点击的泊松分布,以及二元选择的二项分布。没有复杂的数学,只有清晰的概念、真实的例子,以及为什么它们重要。

2025-08-08 19:50:58 1909

原创 Lipschitz连续函数

在数学分析中,Lipschitz连续性以德国 数学家 鲁道夫·利普希茨 (Rudolf Lipschitz)的名字命名,是函数一致连续性的强形式。直观地说,Lipschitz连续函数的变化速度有限:存在一个实数,使得对于该函数图上的每一对点,连接它们的直线斜率的绝对值不大于该实数;这样的最小边界称为该函数的Lipschitz常数

2025-08-01 19:57:13 1898

林业类数目种类分布的数据集

仅根据制图变量预测森林覆盖类型(无遥感数据)。给定观测(30 x 30 米单元)的实际森林覆盖类型是根据美国林务局 (USFS) 第 2 区资源信息系统 (RIS) 数据确定的。自变量源自最初从美国地质调查局 (USGS) 和 USFS 数据获得的数据。数据为原始形式(未缩放),包含定性自变量(荒野地区和土壤类型)的二进制(0 或 1)数据列。 该研究区域包括位于科罗拉多州北部罗斯福国家森林的四个荒野地区。这些区域代表了人为干扰最小的森林,因此现有的森林覆盖类型更多的是生态过程而不是森林管理实践的结果。这四个荒野地区的一些背景信息: Neota(区域 2)可能具有 4 个荒野地区中最高的平均海拔值。 Rawah(区域 1)和 Comanche Peak(区域 3)的平均海拔值较低,而 Cache la Poudre(区域 4)的平均海拔值最低。 至于这些地区的主要树种,尼奥塔的主要树种是云杉/冷杉(1 型),而拉瓦和科曼奇峰的主要树种可能是黑松(2 型),其次是云杉/冷杉和白杨(5 型) )。 Cache la Poudre 往往含有黄松(3 类)、花旗松(6 类)和棉白杨/柳

2024-02-22

实木板表面纹理识别数据集

说明 我们搭建了一个用于拍摄实木板表面纹理照片的自动化传输平台,配备了 OscarF810CIRF 工业相机。拍摄的照片被裁剪为200×200像素,构成模型训练和测试的数据集。为了更好地拟合我们的模型,我们随机选择了原始数据集的80%作为训练集。然后通过四种扩展方法将原始训练集扩展至原来的六倍。第一种方法,以图像横轴为对称轴,对训练集中所有图像进行上下镜像;第二种方法,以图像纵轴为对称轴,对训练集中所有图像进行左右部分镜像;第三种方法随机提取原始训练集的二分之一,并对其进行随机亮度变换;第四种方法随机抽取一半的原始训练集,对其进行随机对比变换。剩余20%的原始数据集作为模型的测试集。

2024-02-21

Capstone-食物数据集

说明 以下是该项目的一些用例: 饮食跟踪应用程序:该模型可用于饮食和营养跟踪应用程序,帮助个人识别和记录他们每天消耗的食物。这有助于更好地跟踪他们的卡路里摄入量和其他营养信息。 自动化食品服务机器人:“Capstone-food”模型可用于自动化餐厅的食品服务机器人。机器人可以使用这个模型来识别不同类型的食物,并相应地将它们送到正确的餐桌上。 快餐行业的食品质量控制:该模型可以帮助实现快餐连锁店质量控制过程的自动化。它可以标记食物呈现中的任何不一致之处,检查是否准备了正确的食物订单,或者是否有任何异常情况(例如错误的物体)。 互动烹饪节目或教程:此模型可用于互动烹饪节目或在线教程。观众可以参与诸如成分识别或了解正在准备的特定菜肴的琐事等任务。 智能杂货购物:该模型可用于构建智能购物应用程序。这些应用程序可以帮助用户在购物时识别食品,并提供营养成分、可能的食谱或是否符合他们的饮食要求等信息。

2024-02-21

关于数据集:食物的热量

关于数据集:食物的热量 该数据集将帮助您发现常见食物的热量含量和其他事实。当您使用此数据集来了解您的身体如何从您最喜欢的膳食和零食中获取能量时,特别注意您所吃食物中的卡路里含量,您将能够做出永远不会让您感到内疚的饮食选择(或备胎)。44 个食品类别中每 100 克 2225 种食品的卡路里/KJ。

2024-02-21

坦克打飞船的完整代码(可执行)

说明 此为完整游戏完成。 这是一个完整的pygame游戏。1)有动画,有音乐,对象编程。2)事件管理:我们将首先管理事件的代码移到了一个名为check_events()的函数中,以简化run_ganme()并隔离事件管理循环。通过隔离事件循环,可将事件管理与游戏其他方面(如更新屏幕)分离。3)事件循环:这个模块中导入了事件检查循环要使用的sys和pygame。当前函数check_envents()不需要任何形参,其函数体复制了alien_invasions.py事件循环。比如:修改alien_invasion.py,使其导入模块game_functions,并将事件循环替换为对函数check_points()的调用。4)重构设计:在大型的项目中,经常需要在添加新代码前重构既有代码。重构旨在简化既有代码的结构,使其容易扩展。在本小节中,我们创建了一个名为game_functions的新模块,它将存储大量让游戏《外星人入侵》运行函数。通过创建模块game_functions,可避免alien_invasion.py太长,并使其逻辑更容易理解。

2024-02-16

坦克打飞碟的游戏基础界面实现

说明 这里是pygame游戏制作的示范,其中看点是,1)如何在时间驱动下对象移动;2)如何用键盘驱动坦克移动 3)画面重叠后如何处理遮挡。总之,这是一个简短的掌握pygame的高效案例。

2024-02-16

8pygame键盘动画实现

1 说明 该资源是面向游戏编程的初步阶段,是模拟游戏背景设定;游戏前景如何设定;游戏中定时器; 游戏中的键盘操控;游戏前景物体移动等. 资源内共分三段程序:1 如何显示图片;如何重叠显示图片;2 如何分配键盘和时间的关系. 3 如何使得游戏中前景移动。参照博客和示例代码,相信客户很快就能掌握相关知识。 2 资源描述 在Pygame中窗口和图片都称为Surface,所谓Surface对象在Pygame中就是用来表示图像的对象,图片是由像素组成的,Surface 对象具有固定的分辨率和像素格式。 Surface screen是绘制其他图形的主要窗口,我们设置的是一个800*600像素的窗口,默认是黑色的窗口,这个就是我们游戏的主界面。不过目前还不能随意关闭窗口,需要关闭事件。 3 具体参照博客: https://blog.csdn.net/gongdiwudu/article/details/136112471?spm=1001.2014.3001.5501

2024-02-15

双曲几何的库geometry-tools库(在python用)

说明 Geometry_tools 是一个 Python 包,旨在帮助您处理和可视化双曲空间和射影空间上的群动作。 该包主要构建在 numpy、matplotlib 和 scipy 之上。或者,该包可以使用 Sage 提供的工具来执行(缓慢的)精确计算。 几何工具可以帮助您: 在多个模型(即克莱因模型、双曲面模型、射影模型、庞加莱模型和半空间模型)中对双曲空间中的对象执行数值(或有时是精确)计算 在双曲平面、实射影平面、复射影线上画出漂亮的图画 使用 Coxeter 群的表示进行实际计算双曲距离。 使用有限状态自动机在字双曲群中进行一些简单的计算在双曲平面、实射影平面、复射影线上画出漂亮的图画 还提供了对 3D 图形的一些有限支持(通过 matplotlib)。 参考文章: https://yamagota.blog.csdn.net/article/details/136091083

2024-02-10

C++ 中的模型预测控制(012)

以下文章介绍了应用模型预测控制器的简单控制系统方法。本文讨论了这种控制的基本机制,该机制适用于各种工程领域。MPC 涉及对未来系统行为的预测(由一组方程描述的模型)。在优化过程中实现物理模型的所需位置(成本函数)。 您可以想象,具有系统动态模型(线性时不变 (LTI) 系统中的矩阵 A)的 MPC 模拟或预测模型在未来的位置或行为。然后,控制器计算一系列控制输入,以最小化预定义的成本函数,同时考虑所需的目标和约束。出于本文的目的,我在 C++ 中准备了简单的模拟。其目的是展示可以轻松复制的原理,用于更高级的模型动力学。

2024-02-09

4用C++和matplotlib实现贝塞尔曲线的库

以下文章介绍了用 C++ 计算和绘制的贝塞尔曲线(2D 和 3D)。    贝塞尔曲线具有出色的数学能力来计算路径(从起点到目的地点的曲线)。曲线的形状由“控制点”决定。所讨论的曲线最重要的特征是平滑度。    在许多应用和领域中,平滑度是不可或缺的。我们可以考虑机器人或其他机器的运动,其中运动必须是可预测的,以确保人员和硬件的安全(低磨损系数)。当机器人关节的轨迹被计算为平滑路径时,我们可以假设机器人将按照规划的路径平滑地移动,不会出现急动或意外移动。请注意,在我们考虑的机器人技术中,除了路径之外,还有速度、加速度、冲击力和电机扭矩。所有这些参数主要影响最终路径。    除了机器人技术之外,贝塞尔曲线还用于动画、游戏和设计。为了绘图的目的,我将使用我之前的文章中讨论过的 C++ 的 matplotlib 库。    头文件(用于绘图库)必须与您的 cpp 位于同一文件夹中。您的程序可以按如下方式编译。参考博文:https://yamagota.blog.csdn.net/article/details/136081941

2024-02-09

2用python实现仿射变换的案例

用python实现线性方程组。线性方程组的计算机解法,如果自己写一个,不仅需要程序机巧,而且需要数字计算的理论机巧;绝对不同于《线性代数》所讲授的那样 如果您尝试自己用克莱蒙方法解线性方程组,却实现的不太理想,那就看看这个代码吧。

2024-01-27

基于python的线性方程数字解法

用python实现线性方程组。线性方程组的计算机解法,如果自己写一个,不仅需要程序机巧,而且需要数字计算的理论机巧;绝对不同于《线性代数》所讲授的那样如果您尝试自己用克莱蒙方法解线性方程组,却实现的不太理想,那就看看这个代码吧。

2024-01-27

python多进程博客案例

用python实现线性方程组。线性方程组的计算机解法,如果自己写一个,不仅需要程序机巧,而且需要数字计算的理论机巧;绝对不同于《线性代数》所讲授的那样 如果您尝试自己用克莱蒙方法解线性方程组,却实现的不太理想,那就看看这个代码吧。

2024-01-27

pygame泡泡碰撞游戏

该项目是pygame库多泡泡碰撞游戏的项目。该项目虽简单,但是专业化作品,包括滚动的泡泡碰撞检测、场景画面,音乐伴随等。有兴趣游戏开发的读者,可以从中获得灵感感和启发。与本项目相关的博文地址是:https://yamagota.blog.csdn.net/article/details/134148849 可以参考,进行更高水平的游戏开发。

2023-11-04

python基于pygame库开发的滑雪游戏

该项目是pygame库建立滑雪游戏的项目。该项目虽简单,但是专业化作品,包括滚动的场景画面,音乐伴随等。有兴趣游戏开发的读者,可以从中获得灵感感和启发。与本项目相关的博文地址是:https://yamagota.blog.csdn.net/article/details/134148849 可以参考,进行更高水平的游戏开发。

2023-11-04

Ceras下cifar10的图像识别深度网络

一、说明 深度学习最一般的网络是lenet,和数据集minist数据集搭配;而图像的最一般数据集是cifar10,该数据集由32x32尺度的小图片构成,本项目演示,在tensorflow2.0下,如何构建一个小型感知机,去识别cifar10的图片内容,稍加改变,就可以实现客户图片的识别。

2023-10-26

小工具:移除目录内部所有空目录

一说明  此 Python 脚本搜索并删除指定目录中的空文件夹。它可以帮助您保持干净整洁的文件夹结构,尤其是在处理大型数据集时。此为整理文件小工具,实现归档目的。

2023-10-23

小工具:将目录中文件按照扩展名整齐归档

一说明 此 Python 脚本通过根据文件扩展名将文件分类到子目录中来组织目录中的文件。它标识文件扩展名并将文件移动到相应的子目录。这对于整理下载文件夹或组织特定项目的文件非常有用。此为整理文件小工具,实现归档目的。

2023-10-23

pytorch下多层感知机的实现

一、说明 用pytorch轻松实现多层感知机。本项目中两个看点:1)如何在torch实现多层感知机。2)如何调试这个程序,在调试中,作者发现了典型的系统错误,这种错误是普遍的,很值得记录之,因此,本项目附带《调试记录》以警告读者,如何避免同类问题。

2023-10-23

二项分布的字符串自动生成和统计验证

一、说明 在进行概率实验的时候,需要最基本的抽样实验,而抽样中,最简单的是抛币实验,这里我们实现了机器模拟抛硬币仿真,可以修改0-1分布的概率分布,以生成不同的符号序列。这里假定我们只有a和b两种符号的字符串。稍加修改,该项目可以实现多样本的抽样模拟。以至于数据集可以自动生成。

2023-10-22

使用傅里叶变换测量声卡的频率失真

本资源是对声卡的傅里叶模型进行Python 的 SciPy 工具箱分解,和相关算法库使用,等一系列example示例。并与文章《使用傅里叶变换测量声卡的频率失真》相对应。

2025-03-16

【双曲几何-0加莱模型】庞加来上半平面模型的Python实现

我们知道,双曲几何的著名模型有四种:微分解析模型、庞加莱盘、庞加莱半平面、克莱因盘。庞加莱圆盘模型是表示双曲几何的一种方法,对于大多数用途来说它都非常适合几何作图。然而,另一种模型,称为上半平面模型,使一些计算变得更容易,包括三角形面积的计算。所有的依赖库: ```python import pygame import math import numpy as np import scipy from scipy.linalg import fractional_matrix_power ``` 外加两个自开发库: ```python from PoincarePlot import PoincarePlot from Line import Line ``` 因为代码数量较大,请需要的读者自行下载。

2024-05-07

OpenGL4.6的GLSL语言规格手册

本文档仅指定 OpenGL 着色语言 (GLSL) 4.60 版本。这个需要__VERSION__ 替换 460,并且要求 #version 仅接受 460。如果声明了 #version数字较小时,接受的语言是着色语言的早期版本,即是否支持取决于 API 中上下文的版本和类型。参见规范有关支持哪些语言版本的详细信息,请参阅参考资料。 以前版本的 OpenGL 着色语言以及 OpenGL ES 着色语言,不是此处指定版本的严格子集,特别是在精度、名称隐藏规则和接口变量的处理方面。参见对应的规格特定语言版本,了解特定于该语言版本的详细信息。

2024-04-19

OpenGL4.6开发手册

这是现代图形渲染技术OpenGL4.6开发手册,共有800页,包括丰富的案例和解说,是游戏开发人员的有力助手。

2024-04-19

【OpenGL高级】刚体绕任意轴旋转

解决三维坐标下的刚体旋转问题,欧拉角存在缺陷,当旋转点落在坐标轴上,旋转公式失灵。围绕任意轴旋转的点3d变换,正规公式是罗德里格斯矩阵。本篇专门介绍它的推导过程,而且提供C++的示例代码。

2024-04-19

【OpenGL实践08】现代渲染管线在GLUT和Pygame和Qt.QOpenGLWidget上各自的实现代码

该资源花了很多精力完成,主要看点是1)组件(按钮)参与渲染 2)渲染的关键步骤、关键函数。3)如何在Qt5使用着色器 4)三维视图如何调节显示 5)Qt5下较为健壮的程序布局设计 6)一些手册上不明说的隐含关键点。总之,用Qt5下的渲染管线中,这是一个成功典范。

2024-04-19

QOpenGLWidget的三维渲染

你好朋友们,我试图用 QOpenGLWidget 替换旧的 QGLWidget 来渲染我的 osg 场景很长一段时间,直到我找到这个例子帮了大忙。我们知道,QOpenGLWidget是较为推荐的OpenGL界面,我们就需要了解和使用它。目前这方面资料似乎不够多,尤其是example不多,本篇给出其中之一。以帮助大家熟悉此类编程。

2024-04-17

【OpenGL实验】在python、Qt5、pyOpenGL程序的若干要点

我们采用Qt5做OpenGL的界面,是因为在QGLWidget窗口上,既可以渲染三维动画,也能有按键,方便人机交互。学习渲染艺术的顺序是:首先要能对一些基本几何图形进行渲染。然后是二维物品渲染,最后是三维物体渲染。以下我们对这个学习过程进行系列解读。伴随的程序开发有许多注意点,稍有不慎就使程序陷入瘫痪状态,本系列针对作者的调试代码进行实况分析。

2024-04-15

2022年全球气候热点数据集

作为世界资源研究所全球恢复倡议绘制森林和景观恢复机会地图的一部分,潜在森林地图代表了对在当前气候条件下、没有人类影响的情况下森林生长位置的估计。定义潜在森林范围的主要数据来源是世界陆地生态区(Olson 等,2001)。每个生态区根据其描述(包括当前和潜在的植被)及其不同森林类型的比例,以及以下方面的额外输入,被归类为属于四个类别之一:茂密森林、开阔森林、林地或非森林数据集:当前森林范围;生物气候区划和原始森林覆盖范围;以及根据全球气候变量和海拔进行建模生成的森林分布图(Hansen 等人,2013 年;Zomer 等人,2007 年)。由于全球一致数据的可用性有限,该数据集基于显着简化。这些地图的比例相对较粗,只能用于估计区域或全球范围内的潜在森林覆盖率。潜在森林覆盖率的估计是基于在没有人为干扰的情况下当前的气候条件。

2024-02-22

强化学习的Q(λ)学习原理资料

Q(λ)-学习(Watkins,1989;Peng & Williams,1996)是一种重要的强化学习(RL)方法。它结合了 Q-learning(Watkins,1989;Watkins & Dayan,1992)和 TD(λ)(萨顿,1988;Tesauro,1992)。 Q(λ) 被广泛使用——人们普遍认为它优于简单的一步 Q 学习,因为它使用单一经验来更新评估过去发生的多个状态/动作对 (SAP)。线上与线下。我们区分在线强化学习和离线强化学习。

2024-03-27

强化学习的Q-Learn算法ppt资源

强化学习的主要算法:包括Q-learning、SARSA、DQN、A3C、TRPO、PPO和SAC等。这些算法各有特点,适用于不同的场景和任务。例如,Q-learning和SARSA是基于值函数的强化学习算法,旨在学习最优策略以最大化累积奖励;而DQN则是深度强化学习算法,使用神经网络来估计值函数,并通过反向传播算法更新网络参数。 强化学习在多个领域具有广泛应用。在自动驾驶系统中,强化学习可以帮助车辆感知周围环境并做出决策,实现自主行驶。在医疗领域,强化学习可以用于辅助医生进行病例分析、诊断和治疗方案制定,提高医疗服务的准确性和效率。此外,强化学习还在智能物流和仓储管理、金融投资决策等领域发挥着重要作用。

2024-03-27

使用 python + Qt + OpenGL 的第一步

在本教程中,我们将编写一个小型 Python 脚本,该脚本在 GUI 中呈现一个立方体,并使用滑块来控制其旋转。这将基于其他教程,即本教程,但会更详细地解释该过程和一般 OpenGL 概念。您可以在此处下载完整的脚本。

2024-03-27

使用Python动画粒子的薛定谔波函数(ψ)(完整代码)

物质的双重性质是物理学家中一个著名的概念。原子尺度的物质在某些情况下表现为粒子,而在某些情况下,它们的行为类似于波。为了解释这一点,我们引入了波函数ψ(x,t),它描述的不是粒子的实际位置,而是在给定点找到粒子的概率。波函数ψ(x,t)或概率场,满足一个也许是最重要的偏微分方程,至少对物理学家来说是这样,是薛定谔方程。

2024-03-20

glViewport - 人为干预视口改变和场景

游戏开发中,人机互动机制是必不可少的。输入装置要么操作杆、要么是键盘。视口改变是无论在3D还是2D都要出现的功能,比如,google地图就是一个显然的变视口问题,视口如同一个放大镜在地图上方移动,理论上可以看到地图上所有地方。本篇就模拟实现之。

2024-03-10

【OpenGL实现 03】纹理贴图原理和实现

一、说明 本篇叙述在画出图元的时候,如何贴图纹理图片。和纹理坐标的原理实现,以及纹理如何生成,和如何传递进入着色器。对以上进行解说,并附上源代码。

2024-03-08

12pyopenGL静态圆锥方体球体前后遮挡

一、裁剪说明 在 OpenGL 中提高渲染的一种方式。只刷新屏幕上发生变化的部分,OpenGL 允许将要进行渲染的窗口只去指定一个裁剪框。 基本原理:用于渲染时限制绘制区域,通过此技术可以在屏幕(帧缓冲)指定一个矩形区域。启用裁剪测试之后,不在此矩形区域内的片元被丢弃,只有在此矩形区域内的片元才有可能进入帧缓冲。因此实际达到的效果就是在屏幕上开辟一个小窗口,可以再其中进行指定内容的绘制。

2024-02-23

11PyopenGL如何将图片贴到表面class03

本资源实现对于openGL如何将纹理图片粘贴到对象平面中。 纹理(贴图),纹理是一张2D图片(当然也有1D和3D的纹理),用于贴在物体表面。相比于使用顶点来增添图形的细节,使用纹理能节省开销,并且能做到更多细节。 为了能够把纹理映射(Map)到物体上,我们需要指定物体的每个顶点各自对应纹理的哪个部分。这样每个顶点就会关联着一个纹理坐标(Texture Coordinate),2D的纹理坐标通常用(u,v)或是(s,t)表示,并且 u,v ∈(0, 1),使用纹理坐标获取纹理颜色叫做采样(Sampling)。纹理坐标起始于(0, 0),也就是纹理图片的左下角,终始于(1, 1),即纹理图片的右上角。 我们只需要指定每个顶点对应的纹理坐标,之后在图形的其它片段上进行片段插值(Fragment Interpolation)。

2024-02-23

1975年卡顿伍德湖研究区湿地P1数字正射校正航空

北达科他州斯图茨曼县卡顿伍德湖研究区湿地 P1 航拍照片的正射校正图像。这张照片是 1975 年至 2015 年 7 月和 8 月初拍摄的研究区域照片集的一部分。

2024-02-22

大脚怪野外募集报告数据分析

大脚怪野外研究组织 (BFRO) - www.bfro.net - 是一个致力于调查大脚怪/大脚野人之谜的组织。 共有三个文件: bfro_report_locations.csv- 表格地理编码报告 bfro_reports.json- 以行分隔的 JSON 格式的全文报告。 bfro_reports_geocoded.csv- 报告位置和全文报告的合并和清理版本。 报告 数据集中最有用的文件可能是bfro_reports_geocoded.csv. 它包含与报告位置相关的完整报告中最相关的字段,现在还包含目击当天的天气状况。 天气状况是使用Dark Sky API获得的。 围绕时间戳和纬度/经度值,还对该数据集应用了一些数据清理。 并非所有全文报告都有相应的地理编码报告 - 在这种情况下,地理信息为空。 每个地理编码报告显然都包含纬度和经度值。 它还包含报告标题、报告编号和报告分类。 BFRO 网站上对报告分类进行了解释,但基本上分类决定了事件的性质 - 直接目击、噪音、踪迹等。 还有时间戳。 除了标题之外,该文件中的数据也是结构化的。

2024-02-22

坦桑尼亚的多多马太阳能测量数据

坦桑尼亚的多多马和欣扬加截至 2021 年 12 月 31 日以及达累斯萨拉姆截至 2022 年 11 月 30 日的地面测量太阳辐射和气象数据。马昆杜奇的地面测量太阳辐射和气象数据可在桑给巴尔找到。

2024-02-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除