数据结构-算法-时间复杂度计算

算法的时间复杂度定义为:

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n}=0(f(n))。它表示随问题规模n的增大,算法执行时间的埔长率和 f(n)的埔长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f( n)是问题规横n的某个函数。

根据定义,求解算法的时间复杂度的具体步骤是:

  ⑴ 找出算法中的基本语句;
  算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
  ⑵ 计算基本语句的执行次数的数量级;
  只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
  ⑶ 用大Ο记号表示算法的时间性能。
  将基本语句执行次数的数量级放入大Ο记号中。


如何推导大o阶呢?我们给出了下面 的推导方法:

1.用常数1取代运行时间中的所有加法常数。
2.在修改后的运行次数函数中,只保留最髙阶项。
3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。

简单的说,就是保留求出次数的最高次幂,并且把系数去掉。  如T(n)=2n^2+n+1 =O(n^2)

举个例子。

#include "stdio.h"

int main()
{
    int i, j, x = 0, sum = 0, n = 100;  /* 执行1次 */
    for( i = 1; i <= n; i++)    /* 执行n+1次 */
    {
        sum = sum + i;               /* 执行n次 */   
        for( j = 1; j <= n; j++)    /* 执行n*(n+1)次 */
        {
            x++;                /* 执行n*n次 */
            sum = sum + x;      /* 执行n*n次 */
        }
    }
    printf("%d", sum);          /* 执行1次 */
}


按照上面推导“大O阶”的步骤,我们来看

第一步:“用常数 1 取代运行时间中的所有加法常数”,

则上面的算式变为:执行总次数 =3n^2 + 3n + 1

(直接相加的话,应该是T(n) = 1 + n+1 + n + n*(n+1) + n*n + n*n + 1 = 3n^2 + 3n + 3。现在用常数 1 取代运行时间中的所有加法常数,就是把T(n) = 3n^2 + 3n + 3中的最后一个3改为1. 就得到了 T(n) = 3n^2 + 3n + 1)


第二步:“在修改后的运行次数函数中,只保留最高阶项”。

这里的最高阶是 n 的二次方,所以算式变为:执行总次数 = 3n^2


第三步:“如果最高阶项存在且不是 1 ,则去除与这个项相乘的常数”。

这里 n 的二次方不是 1 所以要去除这个项的相乘常数,算式变为:执行总次数 = n^2


因此最后我们得到上面那段代码的算法时间复杂度表示为: O( n^2 )


下面我把常见的算法时间复杂度以及他们在效率上的高低顺序记录在这里,使大家对算法的效率有个直观的认识。

O(1) 常数阶 < O(logn) 对数阶 < O(n) 线性阶 < O(nlogn) < O(n^2) 平方阶 < O(n^3) < { O(2^n) < O(n!) < O(n^n) }

最后三项用大括号把他们括起来是想要告诉大家,如果日后大家设计的算法推导出的“大O阶”是大括号中的这几位,那么趁早放弃这个算法,在去研究新的算法出来吧。因为大括号中的这几位即便是在 n 的规模比较小的情况下仍然要耗费大量的时间,算法的时间复杂度大的离谱,基本上就是“不可用状态”。



好了,原理就介绍到这里了。下面通过几个例子具体分析下时间复杂度计算过程。

一。计算 1 + 2 + 3 + 4 + ...... + 100。

常规算法,代码如下:

#include "stdio.h"

int main()
{
    int i, sum = 0, n = 100;	/* 执行1次 */
    for( i = 1; i <= n; i++)	/* 执行 n+1 次 */
    {
        sum = sum + i;			/* 执行n次 */
        //printf("%d \n", sum);
    }
    printf("%d", sum);			/* 执行1次 */
}

从代码附加的注释可以看到所有代码都执行了多少次。那么这写代码语句执行次数的总和就可以理解为是该算法计算出结果所需要的时间。该算法所用的时间(算法语句执行的总次数)为: 1 + ( n + 1 ) + n + 1 = 2n + 3

而当 n 不断增大,比如我们这次所要计算的不是 1 + 2 + 3 + 4 + ...... + 100 = ? 而是 1 + 2 + 3 + 4 + ...... + n = ?其中 n 是一个十分大的数字,那么由此可见,上述算法的执行总次数(所需时间)会随着 n 的增大而增加,但是在 for 循环以外的语句并不受 n 的规模影响(永远都只执行一次)。所以我们可以将上述算法的执行总次数简单的记做: 2n 或者简记 n

这样我们就得到了我们设计的算法的时间复杂度,我们把它记作: O(n)


再来看看高斯的算法,代码如下:

#include "stdio.h"

int main()
{
    int sum = 0, n = 100;	/* 执行1次 */
    sum = (1 + n) * n/2;	/* 执行1次 */

    printf("%d", sum);		/* 执行1次 */
}

这个算法的时间复杂度: O(3),但一般记作 O(1)。

从感官上我们就不难看出,从算法的效率上看,O(1) < O(n) 的,所以高斯的算法更快,更优秀。

这也就难怪为什么每本算法书开篇都是拿高斯的这个例子来举例了(至少我看的都是)...人家也确实有那个资本。



二。求两个n阶方阵C=A*B的乘积其算法如下:

   //右边列为语句执行的频度

      void MatrixMultiply(int A[n][n],int B [n][n],int C[n][n])

      {

   (1) for(int i=0; i <n; i++)                       //n+1

         {

   (2)      for (j=0;j < n; j++)                       //n*(n+1)

              {

   (3)           C[i][j]=0;                                  //n^2

   (4)           for (k=0; k<n; k++)                 //n^2*(n+1)

                  {

   (5)              C[i][j]=C[i][j]+A[i][k]*B[k][j]; //n^3

                 }

             }

         }

     }
则该算法所有语句的频度之和为:

T(n) = 2n^3+3n^2+2n+1;  利用大O表示法,该算法的时间复杂度为O(n^3)。


三。分析下列时间复杂度

void test_(int n)
{
    i = 1, k = 100;
    while (i<n)
    {
        k = k + 1;
        i += 2;
    }
}

设for循环语句执行次数为T(n),则 i = 2T(n) + 1 <= n - 1,  即T(n) <= n/2 - 1 = O(n)


四。分析下列时间复杂度

void test_2(int b[], int n)
{
    int i, j, k;
    for (i=0; i<n-1; i++)
    {
        k = i;
        for (j=i+1; j<n; j++)
        {
            if (b[k] > b[j])
            {
                k = j;
            }
        }
        x = b[i];
        b[i] = b[k];
        b[k] = x;
    }
}

其中,算法的基本运算语句是

if (b[k] > b[j])

{

   k = j;

}

其执行次数T(n)为:



五。分析下列时间复杂度

void test_3(int n)
{
    int i = 0, s = 0;
    while (s<n)
    {
        i++;
        s = s + i;
    }
}


其中,算法的基本运算语句即while循环内部分,

设while循环语句执行次数为T(n),则



六。Hanoi(递归算法)时间复杂度分析

void hanoi(int n, char a, char b, char c)
{
    if (n==1)
    {
        printf("move %d disk from %c to %c \n", n, a, c);  //执行一次
    }
    else
    {
        hanoi(n-1, a, c, b);    //递归n-1次
        printf("move %d disk from %c to %c \n", n, a, c);  //执行一次
        hanoi(n-1, b, a, c);    //递归n-1次
    }
}

对于递归函数的分析,跟设计递归函数一样,要先考虑基情况(比如hanoi中n==1时候),这样把一个大问题划分为多个子问题的求解。

故此上述算法的时间复杂度的递归关系如下:











好吧,对于算法的时间复杂度分析就讲到这里了..

今天是10月7号了。   马上又要开课了,   大二学习真苦逼阿。

就扯到这里,希望对大家有所帮助。


学习的路上,与君共勉。

<think>嗯,用户让我介绍一下时间复杂度计算。我需要先理清楚思路,确保自己理解正确,然后一步步解释清楚。首先,我应该从基本概念入手,什么是时间复杂度,为什么它重要。然后介绍大O符号,这是最常用的表示方法。接着,可能需要分步骤讲解如何计算,比如找出基本操作、确定输入规模、计算执行次数,最后简化为大O表示。还要注意常见的例子,比如循环结构、嵌套循环,不同情况下的复杂度差异。可能用户是刚开始学习算法,所以需要例子来辅助理解,避免太抽象。另外,用户可能想知道最坏情况、平均情况这些概念的区别。有没有可能用户混淆了时间复杂度实际执行时间?需要澄清一下,时间复杂度是增长趋势,而不是具体的执行时间。还要检查有没有常见的错误,比如忽略系数低阶项,或者错误地简化表达式。最后,总结一下步骤,帮助用户记忆。应该用简单的中文,结构清晰,分点说明,配合例子。比如,单层循环是O(n),双层嵌套是O(n²),分治算法像二分法是O(log n)。可能需要提到递归的时间复杂度,比如斐波那契的递归是O(2^n),但这可能稍复杂,根据用户的理解程度决定是否深入。总之,确保内容准确,逻辑连贯,例子贴切,让用户能够逐步掌握计算方法。</think>时间复杂度计算算法分析的核心内容,主要用于衡量算法运行时间随输入规模增长的变化趋势。以下是逐步讲解: --- ### 一、基本概念 1. **时间复杂度**:描述算法执行时间与输入规模(n)之间的关系,用大O符号(O)表示。 2. **核心思想**:忽略低阶项常数系数,只保留最高阶项(例如 $O(n^2)$)。 --- ### 二、计算步骤 #### 步骤1:确定基本操作 找到算法中执行次数最多的操作(如循环中的比较、赋值等)。 **示例**: ```python for i in range(n): # 循环内的打印是基本操作 print(i) ``` #### 步骤2:计算执行次数 统计基本操作的执行次数,用关于n的表达式表示。 **示例**: - 单层循环:执行n次 → $T(n) = n$ - 双层嵌套循环:执行$n \times n = n^2$次 → $T(n) = n^2$ #### 步骤3:简化为大O表示 保留最高阶项,去掉系数低阶项: - 若 $T(n) = 3n^2 + 2n + 1$ → $O(n^2)$ - 若 $T(n) = 5n + 10$ → $O(n)$ --- ### 三、常见复杂度类型 1. **常数时间**:$O(1)$ ```python x = 10 + 20 # 无循环,操作次数固定 ``` 2. **线性时间**:$O(n)$ ```python for i in range(n): # 单层循环 print(i) ``` 3. **平方时间**:$O(n^2)$ ```python for i in range(n): # 双层嵌套循环 for j in range(n): print(i, j) ``` 4. **对数时间**:$O(\log n)$ ```python while n > 1: # 二分法、折半查找 n = n // 2 ``` 5. **线性对数时间**:$O(n \log n)$ 典型应用:快速排序、归并排序。 --- ### 四、递归算法时间复杂度 通过递推公式分析,例如: - **斐波那契数列(递归)**: $$T(n) = T(n-1) + T(n-2) + O(1)$$ 时间复杂度为 $O(2^n)$(指数级)。 - **二分法(递归)**: $$T(n) = T(n/2) + O(1)$$ 时间复杂度为 $O(\log n)$。 --- ### 五、注意事项 1. **最坏情况 vs 平均情况** - 快速排序的最坏复杂度是$O(n^2)$,平均复杂度是$O(n \log n)$。 2. **空间换时间** 哈希表通过额外空间实现$O(1)$的查询复杂度。 3. **实际应用** 时间复杂度不直接等于实际运行时间,但能反映算法 scalability(扩展性)。 --- ### 六、总结 通过分析基本操作的执行次数,逐步简化为大O表达式,可快速评估算法效率。实际应用中需结合数据规模选择合适的复杂度类型。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Colin丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值