题目描述
于大夫建造了一个美丽的池塘,用来让自己愉快的玩耍。这个长方形的池子被分割成了M 行
和N 列的正方形格子。池塘中有些地方是可以跳上的荷叶,有些地方是不能放置荷叶也不
能跳上的岩石,其他地方是池水(当然于大夫也是不能游泳的)。于大夫十分有趣,他在池
塘跳跃的方式和象棋中的马一样可以向八个方向走日字形,而且于大夫只能跳上荷叶。于大
夫每天从一个给定的有荷叶的地方出发,试图到达另一个给定的有荷叶的地方。但有一天他
发现自己无论如何也不能到达目的地了,除非再在水中放置几个荷叶。于大夫想让你告诉他,
最少还需放置几片荷叶?在放置荷叶最少的前提下,最少需要几步能到达目的地?
数据范围
10%的数据n,m<=4
30%的数据n,m<=10
50%的数据n,m<=30
70%的数据n,m<=50
100%的数据n,m<=100
解法
SPFA。
代码
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define ll long long
using namespace std;
const char* fin="lilypad.in";
const char* fout="lilypad.out";
const int inf=0x7fffffff;
const int maxn=107,maxtot=10007,maxm=17;
const int w[8][2]={{2,1},{1,2},{-1,2},{2,-1},{-1,-2},{-2,-1},{-2,1},{1,-2}};
int n,m,i,j,k,ans,sx,sy,tx,ty;
int a[maxn][maxn];
int f[maxn][maxn],g[maxn][maxn];
int b[maxn*maxn*maxm][2],head,tail;
bool bz[maxn][maxn];
void add(int x,int y,int z,int d){
if (x>0 && x<=n && y>0 && y<=m && a[x][y]!=2){
if (a[x][y]==0) z++;
if (z>f[x][y] || z==f[x][y] && d>g[x][y]) return;
f[x][y]=z;
g[x][y]=d;
if (!bz[x][y]){
b[++tail][0]=x;
b[tail][1]=y;
bz[x][y]=true;
}
}
}
void spfa(){
int i,j,k,xx,yy,nx,ny;
head=tail=0;
add(sx,sy,0,0);
while (head++<tail){
xx=b[head][0];
yy=b[head][1];
for (i=0;i<8;i++){
add(xx+w[i][0],yy+w[i][1],f[xx][yy],g[xx][yy]+1);
}
bz[xx][yy]=false;
}
}
int main(){
freopen(fin,"r",stdin);
freopen(fout,"w",stdout);
scanf("%d%d",&n,&m);
for (i=1;i<=n;i++) for (j=1;j<=m;j++){
scanf("%d",&a[i][j]);
if (a[i][j]==3) sx=i,sy=j;
if (a[i][j]==4) tx=i,ty=j;
}
memset(f,127,sizeof(f));
memset(g,127,sizeof(g));
spfa();
if (f[tx][ty]<2000000000) printf("%d %d",f[tx][ty],g[tx][ty]);
else printf("-1 -1");
return 0;
}
启发
SPFA的关系式只要是二元关系即可。