大夫似的1

斐波那契数列 \{a_n\}\{a_n\} 定义如下:

\begin{equation} a_1=1,~a_2=1,~a_n=a_{n-1}+a_{n-2} \end{equation} \tag{1}\\\begin{equation} a_1=1,~a_2=1,~a_n=a_{n-1}+a_{n-2} \end{equation} \tag{1}\\

1,1,2,3,5,8,13,21,34,55,\cdots1,1,2,3,5,8,13,21,34,55,\cdots. 取每项的个位数组成一个新数列 \{b_n\}\{b_n\} , 列举该数列前 6868 项如下:

1,1,2,3,5,8,3,1,4,5\\ 9,4,3,7,0,7,7,4,1,5\\ 6,1,7,8,5,3,8,1,9,0\\ 9,9,8,7,5,2,7,9,6,5\\ 1,6,7,3,0,3,3,6,9,5\\ 4,9,3,2,5,7,2,9,1,0\\ 1,1,2,3,5,8,3,1,\cdots\\1,1,2,3,5,8,3,1,4,5\\ 9,4,3,7,0,7,7,4,1,5\\ 6,1,7,8,5,3,8,1,9,0\\ 9,9,8,7,5,2,7,9,6,5\\ 1,6,7,3,0,3,3,6,9,5\\ 4,9,3,2,5,7,2,9,1,0\\ 1,1,2,3,5,8,3,1,\cdots\\

可以观察到 \{b_n\}\{b_n\} 是周期数列. 换句话说,斐波那契数列的个位数以 6060 位为循环. 那么由斐波那契的末 kk 位组成的新数列 \{b_n\}_k\{b_n\}_k 是否也会发生循环呢?


答案是肯定的. 注意到数列 \{b_n\}_k\{b_n\}_k 它的项为:

b_1,b_2,b_3,\cdots\qquad b_n=b_{n-1}+b_{n-2},\quad n\geq3\\b_1,b_2,b_3,\cdots\qquad b_n=b_{n-1}+b_{n-2},\quad n\geq3\\

从第二项之后的每一项,都由前两项唯一决定. 故只需证明,存在两个相异正整数 s,t~(s>t)s,t~(s>t) 可使得

\begin{equation}(b_s,b_{s+1})=(b_t,b_{t+1})\end{equation}\\\begin{equation}(b_s,b_{s+1})=(b_t,b_{t+1})\end{equation}\\

即可. 考虑由相邻的两项组成的数对 (b_i,b_{i+1})(b_i,b_{i+1}), 其中每项都有 \underbrace{00\cdots0}_{k~\text{个}}\rightarrow\underbrace{99\cdots9}_{k~\text{个}}\underbrace{00\cdots0}_{k~\text{个}}\rightarrow\underbrace{99\cdots9}_{k~\text{个}} 共 10^k10^k 种可能, 故不同的数对 (b_i,b_{i+1})(b_i,b_{i+1}) 最多有 10^{2k}10^{2k} 种,取 s\geq 10^{2k}+1s\geq 10^{2k}+1,由抽屉原理, 以下 ss 组数对

(b_1,b_2),(b_2,b_3),(b_3,b_4),\cdots,(b_s,b_{s+1})\\(b_1,b_2),(b_2,b_3),(b_3,b_4),\cdots,(b_s,b_{s+1})\\

中两组完全相同. 这表明,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值