原问题
求 ax≡b(mod p) 的最小正整数解。
解法
实际上是以空间换取时间的算法。
先用散列表把
ai (i∈[0,p√))
都储存起来。
然后再从小到大枚举
j (j∈[0,p√))
,在散列表中查找
bay
,其中
y=j∗p√
,若存在,则
y+i
就是最小正整数解。
求 ax≡b(mod p) 的最小正整数解。
实际上是以空间换取时间的算法。
先用散列表把
ai (i∈[0,p√))
都储存起来。
然后再从小到大枚举
j (j∈[0,p√))
,在散列表中查找
bay
,其中
y=j∗p√
,若存在,则
y+i
就是最小正整数解。