BSGS

大步小步算法 BSGS(baby steps giant steps)

BSGS是用来解决离散对数问题的,即 a x ≡ b ( m o d p ) a^x \equiv b \pmod p axb(modp)。其中,a,b,p已知,且a和p互质,求x。根据欧拉定理,我们知道 a ϕ ( p ) ≡ 1 ( m o d p ) a^{\phi(p)} \equiv 1 \pmod p aϕ(p)1(modp),而 ϕ ( p ) < p \phi(p)<p ϕ(p)<p,所以,采用枚举法,我们可以在 O ( p ) O(p) O(p)时间复杂度求出x。
BSGS可以在 O ( p ) O(\sqrt p) O(p )的时间复杂度内求出x,它是这么做的:
首先,令 m = ⌈ p ⌉ ,    r = x   m o d   m m= \lceil \sqrt p \rceil ,\; r=x \bmod m m=p ,r=xmodm x = k ∗ m + r (1) x=k*m+r \tag 1 x=km+r(1)
其中 0 ≤ k < m , 0 ≤ r < m 0\leq k < m ,0 \leq r < m 0k<m0r<m
于是有 a k ∗ m + r ≡ b ( m o d p ) a^{k*m+r} \equiv b \pmod p akm+rb(modp)
因为a与p互质,所以两边同时乘以 a − r a^{-r} ar,则
a k ∗ m ≡ b ∗ a − r ( m o d p ) a^{k*m} \equiv b*a^{-r} \pmod p akmbar(modp)
对于 ( 0 ≤ i ≤ r ) (0 \leq i \leq r) (0ir),求出所有的 b ∗ a − i   m o d   p b*a^{-i} \bmod p baimodp,将值和对应的i都保存在map中.
然后再求左边 a j ∗ m   m o d   p ( 0 ≤ j < k ) a^{j*m} \bmod p (0 \leq j < k) ajmmodp(0j<k) ,并在map中查找是否出现过相同的值。如果有,则已经找出答案了,则答案为 j ∗ m + i j*m+i jm+i。如果没有,表示无解。
其实我们可以稍微改进一下,以避免求逆元。
将公式(1)变换一下:
x = k ∗ m − r (2) x=k*m-r \tag 2 x=kmr(2)
此时, 1 ≤ k ≤ m , 0 < r ≤ m 1 \leq k \leq m,0 < r \leq m 1km,0<rm
a k ∗ m − r ≡ b ( m o d p ) (3) a^{k*m-r} \equiv b \pmod p \tag 3 akmrb(modp)(3)
两边同时乘以 a r a^r ar,可得:
a k ∗ m ≡ b ∗ a r ( m o d p ) (4) a^{k*m} \equiv b*a^r \pmod p \tag 4 akmbar(modp)(4)
先求出右边所有的 b ∗ a i (   m o d   p ) ( 1 ≤ i ≤ r ) b*a^i (\bmod p) (1 \leq i \leq r) bai(modp)(1ir) ,保存在map中,然后再求左边的 a j ∗ m   m o d   p a^{j*m} \bmod p ajmmodp,并在map中查找是否出现过。如果出现过,左边枚举的是j,右边枚举的是i,则答案为 x = j ∗ m − i x=j*m-i x=jmi.这样就可以不用求逆元了,但仍然用到了逆元。因为我们的推导必须是等价推导,只有当a与p互质时,即 a r a^r ar的逆元存在时,式(3)和式(4)才是等价的。因为如果a不与p互质,式(4)是不能推出式(3)的。

例题1:(poj2417)
题意:给出一个质数P,一个整数B,2<=B<P,和一个整数N,1<=N<=P,求底为B,模为P下的离散对数,如果有多个解,则输出最小的非负整数解。即解方程 B x ≡ N   m o d   P B^x \equiv N \bmod P BxNmodP,求最小的x,x>=0

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<map>
#include<cmath>
using namespace std;
#define LL long long int
map<LL,int> mp;
int b,n,p,x,ans;
int bsgs()
{
    mp.clear();
    int m=ceil(sqrt(p));
    LL tmp=1;
    for(int i=1;i<=m;i++)
    {
      tmp=tmp*b%p;
      mp[tmp*n%p]=i; //这里会覆盖掉之前的解,即保存的是最大的i。
    }
    int res=1;
    for(int i=1;i<=m;i++)
    {  res=res*tmp%p;
       if(mp[res])
       {
           ans=m*i-mp[res]; //因为mp[res]保存的是最大的,所以ans是最小的解。
           return ans;
       }
    }
    return -1;
}
int main()
{
    while(scanf("%d%d%d",&p,&b,&n)!=-1)
    {
        n%=p,b%=p;
        if(n==1)
            ans=0;
        else if(b==0)
                {if(n!=0)
                   ans=-1;
                 else ans=1;
                }
        else
        ans=bsgs();
        if(ans>=0)printf("%d\n",ans);
        else printf("no solution\n");
    }
    return 0;
}

扩展BSGS

对于 a x ≡ b ( m o d p ) (1) a^x \equiv b \pmod p \tag 1 axb(modp)(1)

如果a与p不互质,则不能直接套用BSGS。而扩展BSGS正是解决这种情况的。
可以将(1)变形:
a x + k p = b (2) a^x+kp=b \tag 2 ax+kp=b(2)
设a与p的最大公约数为g,即 g = ( a , p ) g=\left(a,p\right) g=(a,p).若 g ∤ b g \nmid b gb,则方程无解,不过这里有一个例外,即当b=1时,x=0。
将式(2)左右两边除以g,得到:
a x − 1 a g + k p g = b g (3) a^{x-1}\frac{a}{g}+k\frac{p}{g}=\frac{b}{g} \tag 3 ax1ga+kgp=gb(3)
a ′ = a g , p ′ = p g a'=\frac{a}{g},p'=\frac{p}{g} a=ga,p=gp, b ′ = b g b'=\frac{b}{g} b=gb,
a x − 1 a ′ + k p ′ = b ′ a^{x-1}a'+kp'=b' ax1a+kp=b
若a与 p g \frac{p}{g} gp仍然不互质,则继续找出a与p’的最大公约数g’,(3)两边继续除以g’,直到最后a与p’互质为止。
这里我们假设a与p’互质,此时,a’与p’也是互质的,于是可以转换为:

a x − c n t ≡ b ′ ( a ′ ) − 1 ( m o d p ′ ) a^{x-cnt} \equiv b'(a')^{-1}\pmod{p'} axcntb(a)1(modp)
其中cnt表示两边除以最大公约数g的次数。
此处右边有逆元。为了避免求逆元,可以将a’保留在左边。在用bsgs枚举左边时,初始值就设为a’。
如果在除以g的过程中,发现 b ′ ( a ′ ) − 1 = 1 b'(a')^{-1}=1 b(a)1=1,则立马可以得到答案,即x-cnt=0,即x=cnt。
此时,直接套用基础的BSGS即可了。
不要忘了最后的答案要加上cnt。


#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<map>
#include<cmath>
using namespace std;
#define LL long long int
LL a,b,p;
int ans;
map<LL,int> myp;
LL gcd(LL x,LL y)
{
    return (!y)?x:gcd(y,x%y);
}
LL ksm(LL x,LL y,LL mod)
{
    LL res=1;
    while(y)
    {
        if(y&1)
        res=res*x%mod;
        x=x*x%mod;
        y>>=1;
    }
    return res;
}
LL bsgs()
{
 
    if(b==1)return 0;
    int cnt=0;
    LL tmp=1,g;
    while((g=gcd(a,p))!=1)
    {
        if(b%g)return -1;//no solution
        cnt++;
        b=b/g;
        p=p/g;
        if(p==1&&b!=0)return -1;
        if(p==1&&b==0)return cnt;
        if(b==1)return cnt;
        tmp=tmp*(a/g)%p;
    }
    int m=ceil(sqrt(p));
    LL aa=1;
    myp.clear();
    for(int i=1;i<=m;i++)
    {
        aa=aa*a%p;
        myp[b*aa%p]=i;//保存最大的i
 
    }
    for(int i=1;i<=m;i++)
    {
        LL tt1=aa*tmp%p;
        if(myp.count(tt1))
            return i*m-myp[tt1]+cnt;
        tmp*=aa;
        tmp%=p;
    }
    return -1;
}
int main()
{
   while(1)
   {cin>>a>>p>>b;
    if(!(a||p||b))break;
    ans=bsgs();
    if(ans==-1)printf("No Solution\n");
    else
        printf("%d\n",ans);
   }
   return 0;
}
  • 7
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值