关闭

快速傅立叶变换的C语言实现方法

7131人阅读 评论(0) 收藏 举报
分类:

转自:http://www.beamsky.com/fft-c-language/

傅立叶变换的重要性不用我说,想必大家也很清楚,有了傅立叶变换,我们就可以从信号的频域特征去分析信号。尤其在无线通信系统中,傅里叶变换的重要性就更加明显了,无论是设计者还是测试工程师,在工作中都会和傅立叶变换打交道。在以下的文章中,我给出一种傅里叶变换的C语言实现方法(参考了C常用算法集),可以用于在嵌入式系统中实现傅立叶变换。

傅里叶变换

常规的傅立叶变换算法并不适用于嵌入式控制系统,原因是运算量太大(涉及到复数运算),比如离散的傅立叶变换等同于用序列Y(n×1列矢量)乘以n×n 矩阵Fn,需要n×n次乘法。若n=1024,则是104,8576次乘法运算。哇,这么多呀!什么概念呢?如果你选用的CPU单周期指令为25ns, 单周期也可以完成一次乘法运算,那么要计算1024点的傅立叶变换则需要26.2144ms,这还不包括加法或其它运算,对于大多数实时系统,这个处理时间实在太长。于是寻找一个快速的傅立叶变换算法是人们所期望的。

本来我想把FFT的整个数学推导过程列完出来,但当自己硬着头皮看完后,发现对我没有任何用处,我又不是专门研究数学算法的,哪有那么多时间跟着书本的公式去慢慢推导。我想,这些推导问题还是让数学家想去吧。我需要的不过是理解它,然后学会应用它就行。有兴趣的读者可以参考相关的资料,这方面的资料实在太多了。

虽然FFT大幅度地降低了常规傅立叶变换的运算量,但对于一般的单片机而言,处理FFT运算还是力不从心。主要原因是FFT计算过程中的蝶形运算是复数运算,要分开实部和虚部分别计算,想想这是多么繁琐的事情。可能会有些初学者认为,有这么复杂吗?我在PC上使用C++一样可以对复数直接进行加、减、乘、除运算。你说得不错,可以这么做,但那是C++封装了对复数处理的类,直接调用就行。在PC上运算这种类型的算法一般不考虑时间和空间,多一两秒的运行时间不会有什么灾难性的结果。

所以我们要衡量一个处理器有没有足够的能力来运行FFT算法,根据以上的简单介绍可以得出以下两点:

  1. 处理器要在一个指令周期能完成乘和累加的工作,因为复数运算要多次查表相乘才能实现。
  2. 间接寻址,可以实现增/减1个变址量,方便各种查表方法。FFT要对原始序列进行反序排列,处理器要有反序间接寻址的能力。

所以,在数字信号的分析处理应用中,DSP比其它的处理器有绝对的优势,因为DSP完全具备以上条件。这就是单片机(51系列,AVR,PIC等等)或ARM处理器很少用来进行数字信号分析的原因。

重点来了,下面的这段程序就是用C语言实现傅里叶变换

                                //**********************************************************
                          // 函数名: 快速傅立叶变换(来源《C常用算法集》)
                          // 本函数测试OK,可以在TC2.0,VC++6.0,Keil C51测试通过。
                          // 如果你的MCS51系统有足够的RAM时,可以验证一下用单片机处理FFT有多么的慢。
                          //
                          // 入口参数:
                          // l: l = 0, 傅立叶变换; l = 1, 逆傅立叶变换
                          // il: il = 0,不计算傅立叶变换或逆变换模和幅角;il = 1,计算模和幅角
                          // n: 输入的点数,为偶数,一般为32,64,128,…,1024等
                          // k: 满足n=2^k(k>0),实质上k是n个采样数据可以分解为偶次幂和奇次幂的次数
                          // pr[]: l=0时,存放N点采样数据的实部
                          // l=1时, 存放傅立叶变换的N个实部
                          // pi[]: l=0时,存放N点采样数据的虚部
                          // l=1时, 存放傅立叶变换的N个虚部
                          //
                          // 出口参数:
                          // fr[]: l=0, 返回傅立叶变换的实部
                          // l=1, 返回逆傅立叶变换的实部
                          // fi[]: l=0, 返回傅立叶变换的虚部
                          // l=1, 返回逆傅立叶变换的虚部
                          // pr[]: il = 1,i = 0 时,返回傅立叶变换的模
                          // il = 1,i = 1 时,返回逆傅立叶变换的模
                          // pi[]: il = 1,i = 0 时,返回傅立叶变换的辐角
                          // il = 1,i = 1 时,返回逆傅立叶变换的辐角
                          // data: 2005.8.15,Mend Xin Dong
                          void kkfft(double pr[], double pi[], int n, int k,
                        double fr[], double fi[], int l, int il)
                          {
                           int it,m,is,i,j,nv,l0;
                           double p,q,s,vr,vi,poddr,poddi;
                          
                           for (it=0; it<=n-1; it++)
                           {
                           m = it;
                           is = 0;
                           for(i=0; i<=k-1; i++)
                           {
                           j = m/2;
                           is = 2*is+(m-2*j);
                           m = j;
                           }
                           fr[it] = pr[is];
                           fi[it] = pi[is];
                           }
                          //—————————-
                           pr[0] = 1.0;
                           pi[0] = 0.0;
                           p = 6.283185306/(1.0*n);
                           pr[1] = cos(p);
                           pi[1] = -sin(p);
                          
                           if (l!=0)
                           pi[1]=-pi[1];
                          
                           for (i=2; i<=n-1; i++)
                           {
                           p = pr[i-1]*pr[1];
                           q = pi[i-1]*pi[1];
                           s = (pr[i-1]+pi[i-1])*(pr[1]+pi[1]);
                           pr[i] = p-q;
                           pi[i] = s-p-q;
                           }
                          
                           for (it=0; it<=n-2; it=it+2)
                           {
                           vr = fr[it];
                           vi = fi[it];
                           fr[it] = vr+fr[it+1];
                           fi[it] = vi+fi[it+1];
                           fr[it+1] = vr-fr[it+1];
                           fi[it+1] = vi-fi[it+1];
                           }
                           m = n/2;
                           nv = 2;
                          
                           for (l0=k-2; l0>=0; l0–)
                           {
                           m = m/2;
                           nv = 2*nv;
                           for(it=0; it<=(m-1)*nv; it=it+nv)
                           for (j=0; j<=(nv/2)-1; j++)
                           {
                           p = pr[m*j]*fr[it+j+nv/2];
                           q = pi[m*j]*fi[it+j+nv/2];
                           s = pr[m*j]+pi[m*j];
                           s = s*(fr[it+j+nv/2]+fi[it+j+nv/2]);
                           poddr = p-q;
                           poddi = s-p-q;
                           fr[it+j+nv/2] = fr[it+j]-poddr;
                           fi[it+j+nv/2] = fi[it+j]-poddi;
                           fr[it+j] = fr[it+j]+poddr;
                           fi[it+j] = fi[it+j]+poddi;
                           }
                           }
                          
                           if(l!=0)
                           for(i=0; i<=n-1; i++)
                           {
                           fr[i] = fr[i]/(1.0*n);
                           fi[i] = fi[i]/(1.0*n);
                           }
                          
                           if(il!=0)
                           for(i=0; i<=n-1; i++)
                           {
                           pr[i] = sqrt(fr[i]*fr[i]+fi[i]*fi[i]);
                           if(fabs(fr[i])<0.000001*fabs(fi[i]))
                           {
                           if ((fi[i]*fr[i])>0)
                           pi[i] = 90.0;
                           else
                           pi[i] = -90.0;
                           }
                           else
                           pi[i] = atan(fi[i]/fr[i])*360.0/6.283185306;
                           }
                          return;
                          }

 

0
0
查看评论

快速傅里叶算法 C语言实现

快速傅里叶算法(C语言)        考研阶段学习过傅里叶级数,而最近的项目正好是用C语言编写傅里叶变换,于是很认真的复习了傅里叶级数。可是无奈,看来看去反而晕晕乎乎的。后经师兄师姐的指教,才得知对于工程中的信号处理,研究周期性的傅里叶...
  • Sxx_vv_csdn
  • Sxx_vv_csdn
  • 2015-08-16 22:08
  • 4050

傅立叶变换c语言实现

傅立叶变换的重要性不用我说,想必大家也很清楚,有了傅立叶变换,我们就可以从信号的频域特征去分析信号。尤其在无线通信系统中,傅里叶变换的重要性就更加明显了,无论是设计者还是测试工程师,在工作中都会和傅立叶变换打交道。在以下的文章中,我给出一种傅里叶变换的C语言实现方法(参考了C常用算法集),可以用于在...
  • liuzheng081
  • liuzheng081
  • 2016-11-30 15:29
  • 311

傅立叶变换与傅立叶反变换的C语言实现

<br /> #include <math.h> #include <malloc.h> #define pi (double) 3.14159265359 /*复数的定义*/ typedef struct { double re; d...
  • jackhenry
  • jackhenry
  • 2011-01-03 16:22
  • 6998

终于弄明白了傅里叶变换

真是惭愧,学《数字信号处理》好长时间了,也记住了傅里叶变换的公式,也会做FFT程序了,但是居然不知道傅里叶变换的意义何在!真是该!!       还好,算是搞明白了。抛开数学上的意义不说,单说一下实际的一些意义吧。傅里叶变换是将信号从时域转换到...
  • shengzhuzhu
  • shengzhuzhu
  • 2013-03-17 15:25
  • 1599

用c语言实现的FFT

一、对FFT的介绍 1. FFT(Fast Fourier Transformation),即为快速傅里叶变换,是离散傅里叶变换的快速算法,它是根据离散傅里叶变换的奇、偶、虚、实等特性,对离散傅里叶变换的算法进行改进获得的。 2.FFT算法的基本原理       FFT...
  • tf18269639242
  • tf18269639242
  • 2016-11-03 18:43
  • 7448

几种快速傅里叶变换(FFT)的C++实现

DFT的的正变换和反变换分别为(1)和(2)式。假设有N个数据,则计算一个频率点需要N次复数乘法和N-1次复数加法,整个DFT需要N*N次复数乘法和N(N-1)次复数加法;由于一次的复数乘法需要进行4次的实数乘法和2次的复数加法,一次的复数加法需要两次的实数加法,因此整个DFT需要4*N*N次的实数...
  • zwlforever
  • zwlforever
  • 2008-03-14 17:34
  • 14035

准零基础搞懂FFT快速傅里叶变换及其实现程序(一)

//---------------------前言唠叨废话------------------------------------------- 本文的目标:让不是很了解DSP的小伙伴会用FFT(快速傅里叶变换),并知道怎么用代码实现FFT,不求甚解,但求works。 最近做项目用到FF...
  • birthmarkqiqi
  • birthmarkqiqi
  • 2015-07-27 21:43
  • 5431

基于C语言的快速傅里叶变换FFT算法(含详细注释)

  • 2013-06-23 13:44
  • 265KB
  • 下载

傅里叶变换及C语言实现

  • 2010-12-01 14:04
  • 42KB
  • 下载

FFT快速傅里叶变换的C语言实现代码

  • 2011-04-03 13:53
  • 3KB
  • 下载
    个人资料
    • 访问:554447次
    • 积分:7257
    • 等级:
    • 排名:第3671名
    • 原创:75篇
    • 转载:538篇
    • 译文:1篇
    • 评论:91条
    最新评论