关闭
当前搜索:

adb启动APP

adb shell am start -n com.techvision.yunbaotest/com.techvision.yunbaotest.MainActivity -S...
阅读(792) 评论(0)

粒子滤波 演示与opencv代码

转自:http://blog.csdn.net/onezeros/article/details/6319180 粒子滤波的理论实在是太美妙了,用一组不同权重的随机状态来逼近复杂的概率密度函数。其再非线性、非高斯系统中具有优良的特性。opencv给出了一个实现,但是没有给出范例,学习过程中发现网络上也找不到。learning opencv一书中有介绍,但距离直接使用还是有些距离。在经过一...
阅读(480) 评论(0)

RBPF

滤波...
阅读(800) 评论(0)

坐标旋转与平移

原坐标逆时针旋转theta角度与右上:在原坐标系下的新坐标...
阅读(495) 评论(0)

理解重要性采样

转自:http://blog.csdn.net/tianguokaka/article/details/6914554 重要性采样是非常有意思的一个方法。我们首先需要明确,这个方法是基于采样的,也就是基于所谓的蒙特卡洛法(Monte Carlo)。蒙特卡洛法,本身是一个利用随机采样对一个目标函数做近似。例如求一个稀奇古怪的形状的面积,如果我们没有一个解析的表达方法,那么怎么做呢?蒙特卡洛...
阅读(939) 评论(0)

文章标题

粒子滤波 一阶马尔科夫模型...
阅读(429) 评论(0)

Particle Filter Tutorial 粒子滤波:从推导到应用(三)

转自:http://blog.csdn.net/heyijia0327/article/details/41122125 五、重采样        在应用SIS 滤波的过程中,存在一个退化的问题。就是经过几次迭代以后,很多粒子的权重都变得很小,可以忽略了,只有少数粒子的权重比较大。并且粒子权值的方差随着时间增大,状态空间中的有效粒子数较少。随着无效采样粒子数目的增加,使得大量的计算浪费...
阅读(713) 评论(0)

Particle Filter Tutorial 粒子滤波:从推导到应用(四)

转自:http://blog.csdn.net/heyijia0327/article/details/41142679 六、Sampling Importance Resampling Filter (SIR)        SIR滤波器很容易由前面的基本粒子滤波推导出来,只要对粒子的重要性概率密度函数做出特定的选择即可。在SIR中,选取:         p( x(k)|x(k...
阅读(741) 评论(0)

Particle Filter Tutorial 粒子滤波:从推导到应用(二)

转自:http://blog.csdn.net/heyijia0327/article/details/40929097 二、蒙特卡洛采样 假设我们能从一个目标概率分布p(x)中采样到一系列的样本(粒子),(至于怎么生成服从p(x)分布的样本,这个问题先放一放),那么就能利用这些样本去估计这个分布的某些函数的期望值。譬如:                       上面的式子其...
阅读(840) 评论(0)

Particle Filter Tutorial 粒子滤波:从推导到应用(一)

转自:http://blog.csdn.net/heyijia0327/article/details/40899819 前言:       博主在自主学习粒子滤波的过程中,看了很多文献或博客,不知道是看文献时粗心大意还是悟性太低,看着那么多公式,总是无法把握住粒子滤波的思路,也无法将理论和实践对应起来。比如:理论推导过程中那么多概率公式,概率怎么和系统的状态变量对应上了?状态粒子是怎么一...
阅读(1197) 评论(0)

LQR 的直观推导及简单应用

转自:http://blog.csdn.net/heyijia0327/article/details/39270597 本文主要介绍LQR的直观推导,说明LQR目标函数J选择的直观含义以及简单介绍矩阵Q,R的选取,最后总结LQR控制器的设计步奏,并将其应用在一个简单的倒立摆例子上。             假设有一个线性系统能用状态向量的形式表示成:                 ...
阅读(1642) 评论(0)

卡尔曼滤波 -- 从推导到应用(二)

转自:http://blog.csdn.net/heyijia0327/article/details/17667341 该文是自我总结性文章,有纰漏,请指出,谢谢。           --白巧克力 这部分主要是通过对第一部分中提到的匀加速小车模型进行位移预测。 先来看看状态方程能建立准确的时候,状态方程见第一部分分割线以后内容,小车做匀加速运动的位移的预测仿真如下。 ...
阅读(672) 评论(0)

卡尔曼滤波 -- 从推导到应用(一)

转自:http://blog.csdn.net/heyijia0327/article/details/17487467 前言           卡尔曼滤波器是在估计线性系统状态的过程中,以最小均方差为目的而推导出的几个递推数学等式,也可以从贝叶斯推断的角度来推导。           本文将分为两部分: 第一部分,结合例子,从最小均方差的角度,直观地...
阅读(809) 评论(0)

机器人局部避障的动态窗口法(dynamic window approach)

转自:http://blog.csdn.net/heyijia0327/article/details/44983551...
阅读(1307) 评论(0)
    个人资料
    • 访问:554445次
    • 积分:7257
    • 等级:
    • 排名:第3671名
    • 原创:75篇
    • 转载:538篇
    • 译文:1篇
    • 评论:91条
    最新评论