批处理作业调度问题

本文介绍了一种批处理作业调度问题的解决方法,采用回溯算法寻找最优调度方案以最小化作业完成时间。提供了两种实现方式:一是利用全排列结合一维数组标记;二是通过变量记录避免数组标记,提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:
给定n个作业的集合J={J1,J2,…,Jn}。每一个作业有两项任务分别在两台机器上完成。每个作业必须先由机器1处理,再由机器2处理。作业Ji需要机器j的处理时间为tji,i=1,2,…n,j=1,2。对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间。则所有作业在机器2上完成处理的时间和f=F21+F22+…+F2n称为该作业调度的完成时间和。 批处理作业调度问题要求,对于给定的n个作业,制定最佳的作业调度方案,使其完成时间和最小。

题目类型:回溯

代码如下:
方法一:回溯+全排列

#include<stdio.h>
#define N 100
int n;
int a[N]={0},b[N]={0}; //作业在两台机器上的运行时间 
int c[N]={0},bestc[N]={0};
int f1=0,f2[N]; 
int count=0;
int best=1000000;

void swap(int &a,int &b)
{
    int temp=a;
    a=b;
    b=temp;
}

void traceback(int num)
{
    int i;
    if(num>n) {
        if(count<best) { //更新最小时间和,最佳解决方案 
            best=count;
            for(i=1;i<=n;i++)
                bestc[i]=c[i];
        }
        return ;
    }
    for(i=num;i<=n;i++) {
        f1+=a[c[i]]; //第一台机器一直在运行
        f2[num]=(f2[num-1]>f1 ? f2[num-1] : f1) + b[c[i]];//关键代码(用数组标记,回溯时无需还原)
        count+=f2[num];//count只求第二台机器的时间和 
        swap(c[i],c[num]);//全排列进行交换 
        if(count<best)
            traceback(num+1);
        swap(c[i],c[num]);
        count-=f2[num];
        f1-=a[c[i]];
    }
}

int main()
{
    int i,j;
    scanf("%d",&n);
    for(i=1;i<=n;i++) {
        scanf("%d%d",&a[i],&b[i]);
    }
    for(i=1;i<=n;i++) { //全排列的初始化 
        c[i]=i;  
    }
    traceback(1);
    printf("%d\n",best);
    for(i=1;i<=n;i++) {
        printf("%d ",bestc[i]);
    }
    printf("\n");
    return 0;
} 

方法二:个人对于回溯题目的通用解题思路,未使用全排列,也未使用一维数组标记f2[]

#include<stdio.h>
#define N 100
int n;
int a[N]={0},b[N]={0};
int c[N]={0},bestc[N]={0};
int flag[N]={0};//用一个数组标记已经使用过的数字,1表示已经使用,0表示未使用 
int f1=0,f2=0,count=0;//f2使用变量,而非数组 
int best=1000000;

void traceback(int num)
{
    int i;
    if(num>n) {
        if(count<best) {
            best=count;
            for(i=1;i<=n;i++)
                bestc[i]=c[i];
        }
        return ;
    }
    //与全排列不同的地方 
    for(i=1;i<=n;i++) { //一共有1--n种作业可供选择 
        if(flag[i]==0 && count<best) {
            flag[i]=1;
            f1+=a[i];
            /*全排列时用的一维数组f2[],回溯时无需还原,现在使用普通的变量f2,要进行记录*/
            int old=f2;
            f2=(f2>f1 ? f2 : f1) + b[i];
            c[num]=i;
            count+=f2;
            traceback(num+1);
            count-=f2;
            //c[num]=i;无需还原 
            f2=old;
            f1-=a[i];
            flag[i]=0;
        }
    }
}

int main()
{
    int i,j;
    scanf("%d",&n);
    for(i=1;i<=n;i++) {
        scanf("%d%d",&a[i],&b[i]);
    }
    traceback(1);
    printf("%d\n",best);
    for(i=1;i<=n;i++) {
        printf("%d ",bestc[i]);
    }
    printf("\n");
    return 0;
} 

这里写图片描述

批处理作业调度问题是操作系统中一个重要的研究课题,主要涉及如何在有限的资源下高效地执行多个作业。C++作为一种高性能的编程语言,常被用于实现各种调度算法。以下是批处理作业调度问题的一些关键点和常见算法: 1. **作业调度目标**: - **最小化平均等待时间**:减少作业从提交到开始执行的时间。 - **最小化平均周转时间**:减少作业从提交到完成的时间。 - **最大化资源利用率**:确保CPU、内存等资源得到充分利用。 2. **常见调度算法**: - **先来先服务(FCFS)**:按照作业到达的顺序进行调度。 - **最短作业优先(SJF)**:优先调度执行时间最短的作业- **优先级调度**:根据作业的优先级进行调度,优先级高的作业先执行。 - **轮转调度(Round Robin)**:每个作业轮流执行固定的时间片。 3. **C++实现示例**: 下面是一个简单的C++实现示例,展示了如何使用优先级调度算法来调度作业: ```cpp #include <iostream> #include <vector> #include <queue> #include <utility> struct Job { int id; int priority; int duration; Job(int id, int priority, int duration) : id(id), priority(priority), duration(duration) {} }; struct ComparePriority { bool operator()(const Job& a, const Job& b) { return a.priority < b.priority; // 优先级高的作业先执行 } }; int main() { std::vector<Job> jobs = { Job(1, 2, 10), Job(2, 1, 5), Job(3, 3, 8) }; std::priority_queue<Job, std::vector<Job>, ComparePriority> pq; for (const auto& job : jobs) { pq.push(job); } while (!pq.empty()) { Job current = pq.top(); pq.pop(); std::cout << "Executing Job " << current.id << " with priority " << current.priority << " for " << current.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值