【分支限界法】批处理作业调度问题

【分支限界法】批处理作业调度问题

给定n个作业的集合{J1,J2,…,Jn}。每个作业必须先由机器1处理,然后由机器2处理。作业Ji需要机器j的处理时间为tji。对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间。所有作业在机器2上完成处理的时间和称为该作业调度的完成时间和。
批处理作业调度问题要求对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。
例:设n=3,考虑以下实例:
在这里插入图片描述
这3个作业的6种可能的调度方案是1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1;它们所相应的完成时间和分别是19,18,20,21,19,19。易见,最佳调度方案是1,3,2,其完成时间和为18。

// FlowshopHeap.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//

#include <iostream>
#include<queue>

using namespace std;

template<class Type>
class MinHeapNode
{
    template<class Type>
    friend class Flowshop;
public:
    operator Type ()const { return bb; }
private:
    void init(int);
    void NewNode(MinHeapNode<Type>, int, int, int, int);
    Type s,//已经安排的作业数
        f1,//机器1上的最后完成时间
        f2,//机器2上的最后完成时间
        sf2,//当前机器2上的完成时间
        bb,//当前完成时间的下界
        * x;//当前作业调度
};

template<class Type>
void MinHeapNode<Type>::init(int n)
{
    x = new Type[n];
    for (int i = 0; i < n; i++)
        x[i] = i;
    s = 0;
    f1 = 0;
    f2 = 0;
    sf2 = 0;
    bb = 0;
}

template<class Type>
void MinHeapNode<Type>::NewNode(MinHeapNode<Type> E, int Ef1, int Ef2, int Ebb, int n)
{
    x = new Type[n];
    for (int i = 0; i < n; i++)
        x[i] = E.x[i];
    f1 = Ef1;
    f2 = Ef2;
    sf2 = E.sf2 + f2;
    bb = Ebb;
    s = E.s + 1;
}

template<class Type>
class Flowshop
{
    friend int main(void);
public:
    Type BBFlow(void);
    void Sort();
    Type Bound(MinHeapNode<Type>, Type&, Type&, bool**);
private:
    int n;
    Type** M,//各作业所需的处理时间数组
        ** b,//各作业所需的处理时间排序数组
        ** a,//b和M对应的关系
        * bestx,//最优解
        bestc;//当前时间和
    bool** y;
};

template<class Type>
void Swap(Type& a, Type& b)
{
    Type temp = a;
    a = b;
    b = temp;
}

template<class Type>
Type Flowshop<Type>::Bound(MinHeapNode<Type> E, Type& f1, Type& f2, bool** y)
{
    for (int i = 0; i < 2; i++)
        for (int j = 0; j < 3; j++)
            y[i][j] = false;
    for (int i = 0; i < 2; i++)
        for (int j = 0; j < E.s; j++)
            y[i][a[i][E.x[j]]] = true;
    f1 = E.f1 + M[0][E.x[E.s]];
    f2 = (f1 > E.f2 ? f1 : E.f2) + M[1][E.x[E.s]];
    int sf2 = E.sf2 + f2;

    int s1 = 0, s2 = 0, k1 = n - E.s, k2 = n - E.s, f3 = f2;
    for (int i = 0; i < n; i++)
    {
        if (!y[0][i])
        {
            k1--;
            if (k1 = n - E.s - 1)
                f3 = f2 > f1 + b[0][i] ? f2 : f1 + b[0][i];
            s1 += f1 + k1 * b[0][i];
        } 
    }
    for (int i = 0; i < n; i++)
    {
        if (!y[1][i])
        {
            k2--;
            s1 += b[1][i];
            s2 += f3 + k2 * b[1][i];
        }
    }
    return sf2 + (s1 > s2 ? s1 : s2);
}


template<class Type>
Type Flowshop<Type>::BBFlow(void)
{
    Sort();
    priority_queue<MinHeapNode<Type>, vector<MinHeapNode<Type>>, greater<MinHeapNode<Type>>>  priority;
    MinHeapNode<Type> E;
    E.init(n);
    while (E.s<=n)
    {
        if (E.s == n)
        {
            if (bestc > E.sf2)
            {
                bestc = E.sf2;
                for (int i = 0; i < n; i++)
                    bestx[i] = E.x[i];
            }
            delete[]E.x;
        }
        else
        {
            for (int i = E.s; i < n; i++)
            {
                Swap(E.x[E.s], E.x[i]);
                int f1, f2;
                int bb = Bound(E, f1, f2, y);
                if (bb < bestc)
                {
                    MinHeapNode<Type> N;
                    N.NewNode(E, f1, f2, bb, n);
                    priority.push(N);
                }
                Swap(E.x[E.s], E.x[i]);
            }
            delete[]E.x;
        }
        if (priority.empty())
            break;
        else
        {
            E = priority.top();
            priority.pop();
        }
    }
    return bestc;
}

template<class Type>
void Flowshop<Type>::Sort()
{
    Type* c = new Type[n];
    for (int i = 0; i < 2; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            b[i][j] = M[i][j];
            c[j] = j;
        }
           
        for (int j = 0; j < 3-1; j++)
        {
            for (int k = 3 -1; k >j; k--)
            {

                if (b[i][k] < b[i][k - 1])
                {
                    Swap<Type>(b[i][k], b[i][k - 1]);
                    Swap<Type>(c[k], c[k - 1]);
                }
            }
        }

        for (int j = 0; j < 3; j++)
            a[i][c[j]] = j;
    }

    /*for (int i = 0; i < 2; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            cout << M[i][j] << "\t";
        }
        cout << endl;
    }
    cout << "__________________" << endl;
    for (int i = 0; i < 2; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            cout << b[i][j] << "\t";
        }
        cout << endl;
    }
    cout << "__________________" << endl;
    for (int i = 0; i < 2; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            cout << a[i][j] << "\t";
        }
        cout << endl;
    }
    cout << "__________________" << endl;*/

    delete[] c;
}



int main()
{
    int** M;
    M = new int* [2];
    for (int i = 0; i < 2; i++)
        M[i] = new int[3];
    M[0][0] = 2, M[0][1] = 3, M[0][2] = 2;
    M[1][0] = 1, M[1][1] = 1, M[1][2] = 3;
    Flowshop<int> flow;
    int** b, ** a;
    b = new int* [2];
    for (int i = 0; i < 2; i++)
        b[i] = new int[3];
    a = new int* [2];
    for (int i = 0; i < 2; i++)
        a[i] = new int[3];
    bool** y;
    y = new bool* [2];
    for (int i = 0; i < 2; i++)
        y[i] = new bool[3];

    flow.M = M;
    flow.a = a;

    flow.b = b;
    flow.n = 3;
    flow.y = y;
    flow.bestc = 10000;
    flow.bestx = new int[flow.n];
    cout << flow.BBFlow() << endl;

    return 0;
}


  • 1
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
0/1背包问题是一种经典的背包问题,其问题描述为:给定一个固定大小的背包,一些物品和它们的价值,如何在不超过背包容量的情况下,使得背包中物品的总价值最大化。 分支界限法是一种用于求解组合优化问题算法,它将问题分解成一系列子问题,并通过限制子问题的解空间来减少搜索空间。对于0/1背包问题分支界限法可以通过以下步骤进行求解: 1. 将所有物品按照单位重量的价值进行排序,从高到低排列。 2. 定义一个优先队列,用于存储待处理的子问题,并将初始问题加入队列。 3. 对于每个子问题,选择其中一个物品,并分别计算将该物品放入背包和不放入背包两种情况下的最大价值。 4. 将计算出的子问题加入优先队列中,并根据当前最优解更新界限。 5. 重复执行步骤3和4,直到队列为空或无法找到更优的解。 在分支界限法中,界限指的是子问题的解空间范围,通过限制界限可以减少搜索空间,从而加速求解。对于0/1背包问题,界限一般可以通过计算当前子问题下界和上界来确定,其中下界是指已经放入背包的物品的价值和加上剩余物品按单位重量价值排序后的部分,上界是指已经放入背包的物品的价值和加上剩余物品按单位重量价值排序后的部分的前几个物品的总价值。 通过分支界限法,可以高效地求解0/1背包问题,但需要注意的是,算法的性能取决于物品的数量和背包的容量,当物品数量或背包容量非常大时,算法可能会变得非常慢。因此,在实际应用中,需要根据具体问题的规模和特点选择合适的算法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值