华中农业大学第五届程序设计大赛网络同步赛 C Friends

/**
Problem C Friends

题意:给n个人,有n-1个朋友关系,形成一棵树,如果两个人能够通过不超过5个人可以联系到,那么那两个人也是朋友,问你每个人有多少个朋友,
比如(1-2-3-4-5-6-7-8),1可以联系到2 3 4 5 6 7,所以1有6个朋友

思路:先对树进行dfs搜索形成有向树,根节点为1(任意),在设son[o][i]表示以o为节点在通过恰好i个人联系可以成为朋友的个数,只计算在根为o的子树中
的结果,那么设p1,p2,p3,p4,p5,p6为o的一级祖先、二级祖先、..六级祖先那么对于节点o来说, 

不通过p1能成为朋友的个数为 sigma {son[o][i] | 0 <= i <= 6}, 计算的是包含o节点的

不通过p2而通过p1能成为朋友的个数为 sigma {son[p1][i] | 0 <= i <= 5}
但是这里再次计算了经过o的情况, 所以需要减去 sigma {son[p1][i] | 0 <= i <= 4}

同理需要经过Pj祖先的时候, 总个数为 sigma {son[Pj][i] | 0 <= i <= 6 - j}
但是不能再通过Pj-1, 所以减去 sigma {son[Pj-1][i] | 0 <= i <= 6 - j - 1}

所有pj的结果加起来再减去1就是答案了, 因为把o节点自己计算了在内
**/

#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
const int maxn = 1e5 + 10;
using namespace std;

int T, n, kase = 1;
int pre[maxn];
vector<int> G[maxn];
int son[maxn][7];
int que[10];

void dfs(int fa[7], int u) {
    int fat = fa[5];
    pre[u] = fat;
    for(int i = 0; i <= 5; i++) {
        int f = fa[i];
        son[f][6 - i]++;
    }
    int nf[7] = {fa[1], fa[2], fa[3], fa[4], fa[5], u};
    for(int i = 0; i < G[u].size(); i++) {
        int v = G[u][i];
        if(v == fat) continue;
        dfs(nf, v);
    }
}

int main() {
    scanf("%d", &T);
    while(T--) {
        scanf("%d", &n);
        memset(son, 0, sizeof son);
        for(int i = 0; i <= n; i++) {
            son[i][0] = 1;
            G[i].clear();
            for(int j = 1; j < 7; j++) son[i][j] = 0;
        }
        for(int i = 1; i < n; i++) {
            int u, v;
            scanf("%d %d", &u, &v);
            G[u].push_back(v);
            G[v].push_back(u);
        }
        int f[7] = {0, 0, 0, 0, 0, 0};
        dfs(f, 1);
        printf("Case #%d:\n", kase++);
        for(int i = 1; i <= n; i++) {
            int ans = 0;
            for(int j = 0; j <= 6; j++) ans += son[i][j];
            int u = i;
            for(int j = 1; j <= 6; j++) {
                int v = u; u = pre[u];
                if(u == 0) break;
                for(int k = 0; k <= 6 - j; k++) ans += son[u][k];
                for(int k = 0; k <= 6 - j - 1; k++) ans -= son[v][k];
            }
            
            printf("%d\n", ans - 1);
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值