📖标题:LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hallucinations
🌐来源:arXiv, 2410.02707
摘要
🔸大型语言模型(LLM)经常产生错误,包括事实不准确、偏见和推理失败,统称为“幻觉”。最近的研究表明,LLM的内部状态编码了有关其输出真实性的信息,并且这些信息可用于检测错误。
🔸在这项工作中,我们表明LLM的内部表示编码了比以前认识到的更多的关于真实性的信息。我们首先发现,真实性信息集中在特定的令牌中,利用这一特性可以显著提高错误检测性能。然而,我们发现,这种错误检测器无法跨数据集进行泛化,这意味着——与之前的说法相反——真实性编码不是通用的,而是多方面的。接下来,我们展示了内部表示也可以用于预测模型可能产生的错误类型,从而促进量身定制的缓解策略的发展。最后,我们揭示了LLM的内部编码和外部行为之间的差异:它们可能会对正确答案进行编码,但始终会产生不正确的答案。
🔸综上所述,这些见解加深了我们从模型内部角度对LLM错误的理解,这可以指导未来加强错误分析和缓解的研究。代码在https://github.com/technion-cs-nlp/LLMsKnow.
🛎️文章简介
🔸研究问题:大语言模型(LLM)在其输出中未能有效传达不确定性,其内部表示与最终输出之间存在不一致性。
🔸主要贡献:论文从模型中心的角度来研究幻觉现象,通过分析模型内部的“精确答案标记”,揭示了这些标记在错误检测中的关键作用,并展示了这种方法在提高错误检测性能方面的有效性。
📝重点思路
🔺相关工作
🔸定义和描述LLM错误:当前幻觉的研究不一定反映了LLM的编码错误,限制了我们开发针对幻觉根本原因或推理其本质的解决方案。
🔸LLM中的错误检测:许多研究提出了针对特定任务的解决方案,最近转变为解决任何错误类型的通用方案,包括利用外部知识源和模型、不确定性估计和训练探测器等。
🔺论文方案
🔸定义“精确答案标记”:这些标记的修改会改变生成答案的正确性,而不考虑后续生成的内容。
🔸实验设计:实现了每种错误检测方法的“精确答案”版本,以评估其在不同层和标记选择上的效果。
🔸分类器训练:通过训练分类器来预测与生成输出真实性相关的特征,分析了模型内部表示对错误类型的编码。
🔸跨任务泛化:研究了探测分类器在不同任务和数据集上的泛化能力,以评估其在实际应用中的适用性。
🔎分析总结
🔸中间层和后期层的有效性:实验发现,模型中间层和后期层通常能产生最有效的探测结果,这与之前的研究一致。
🔸标记选择的影响:在提示后立即出现的标记显示出强烈的真实性信号,但随着文本生成的进行,信号强度减弱,但在“精确答案标记”处再次达到峰值。
🔸内部表示与外部行为的差异:模型内部编码与外部行为之间存在显著的不一致性,即使模型内部识别出正确答案,它仍可能生成错误的响应。
🔸错误类型的预测:通过分析模型的中间表示,可以预测模型可能产生的错误类型,这有助于定制不同的错误缓解策略。
💡个人观点
论文的核心是提出了“精确答案标记”的概念,作为一种探针技术来表征真实性。
附录