R语言-文本挖掘例子

原创 2015年11月18日 10:24:52

以总理2015报告原文进行挖掘处理,先将报告内容保存为TXT格式文本。

需要的包:rJava,Rwordseg,wordcloud。

library(rJava)

library(Rwordseg)

library(wordcloud)

1、读入文本数据

mydata<-read.csv("D:/test/R/report2015.txt", stringsAsFactors=FALSE,header=FALSE)

2、中文分词

txt<-segmentCN(as.character(mydata$V1))

3、将列表转换为向量

txt.aslist<-unlist(txt)

4、词语统计

txt.freq<-table(txt.aslist)

5、频数排序

txt.result<-txt.freq[order(-txt.freq)]

6、画词云

wordcloud(names(txt.result),txt.result,random.order=FALSE)

7、取前100位画词云

 wordcloud(names(text.result)[1:100],text.result[1:100],random.order=FALSE)


如果要去除停止词,可使用下面的步骤:

8、使用去停止词

(1)导入停止词表

stopword<-read.csv('D:/test/R/stop-word.txt',stringsAsFactors=FALSE,header=FALSE)

(2)将data.frame类型数据转换为向量型数据

stopword.v<-as.vector(stopword$V1)

(3)去除词语统计中的停止词

word.pure<-setdiff(names(txt.result),stopword.v)

word.pure为去除停止词的统计分析对象词表。

(4)取出非停止词

txt.pure<-txt.result[word.pure]

(5)画词云

wordcloud(names(txt.pure)[1:100],txt.pure[1:100],random.order=FALSE)




注意:

对table对象 ta,

dimnames(ta) 结果为list型

names(ta)结果为向量型。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

重磅︱文本挖掘深度学习之word2vec的R语言实现

笔者寄语:2013年末,Google发布的 word2vec工具引起了一帮人的热捧,大家几乎都认为它是深度学习在自然语言领域的一项了不起的应用,各种欢呼“深度学习在自然语言领域开始发力 了”。 基于w...

利用R语言的tm包进行文本挖掘

摘要: tm包是R语言中为文本挖掘提供综合性处理的package,进行操作前载入tm包,vignette命令可以让你得到相关的文档说明library(tm)vignette("tm")首先要读取文本,...

R语言文本挖掘展示:画词云图

一、wordcloud2包首先安装和加载wordcloud2包> install.packages("wordcloud2") > library(wordcloud2)R wordcloud包中wo...

R语言做文本挖掘 Part1安装依赖包

http://blog.csdn.net/cl1143015961/article/details/44082731 Part1 安装依赖包 【发现有人转载,决定把格式什么重新整理一遍,有时间...

文本挖掘深度学习之word2vec的R语言实现

笔者寄语:2013年末,Google发布的 word2vec工具引起了一帮人的热捧,大家几乎都认为它是深度学习在自然语言领域的一项了不起的应用,各种欢呼“深度学习在自然语言领域开始发力 了”。 基于...

R语言文本挖掘之jieba分词与wordcloud展现

引言由于语言的特殊性,中文在进行文本挖掘时需要进行分词,R中对中文分词支持较好的有jiebaR包(快速指南)和李键大哥的RWordseg包,从自己使用情况来看,jiebaR分词的效果要更好一些,本文就...

R语言文本挖掘tm包详解(附代码实现)

文本挖掘相关介绍 1什么是文本挖掘 2NLP 3 分词 4 OCR 5 常用算法 6 文本挖掘处理流程 7 相应R包简介 8 文本处理 词干化stemming ...

R语言︱文本挖掘之中文分词包——Rwordseg包(原理、功能、详解)

笔者寄语:与前面的RsowballC分词不同的地方在于这是一个中文的分词包,简单易懂,分词是一个非常重要的步骤,可以通过一些字典,进行特定分词。大致分析步骤如下: 数据导入——选择分词字典——分词...

R语言做文本挖掘 Part1安装依赖包

原帖地址:http://blog.csdn.net/cl1143015961/article/details/44082731#comments Part1安装依赖包 R语言中中文分析的软...

R语言文本挖掘1——词云制作,基于Rwordseg包

基于Rwordseg包的词云分析
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)