- 博客(1804)
- 资源 (26)
- 收藏
- 关注
原创 【论文精读】当代软件现代化:战略、动力与研究机遇
摘要 本研究系统综述了126篇软件现代化相关论文,揭示了现代化策略的核心驱动因素与挑战。研究发现,现代化决策应基于系统的技术质量、商业价值和创新潜力,而非盲目改造。主要驱动力是降低运营成本(62项研究提及),而非单纯偿还技术债。最大技术障碍是工具支持不足(45项研究提及)。研究归纳出8种现代化策略,包括云端化(最普遍)、架构重构和编程语言转型等。云端化细分方向包括无架构约束迁移、SOA转型和微服务拆分,需解决新旧系统共存、服务识别等问题。架构重构需结合AI辅助,编程语言转型需评估性能与成本效益。未来需加强工
2026-01-09 01:16:07
654
原创 【论文精读】模型驱动的遗留系统逆向工程综述
本文系统回顾了模型驱动逆向工程(MDRE)方法在软件系统维护中的应用。研究发现,64种MDRE方法中62%为通用方案,38%为特定目标设计;其中75%采用静态分析技术,61%实现全自动化。程序理解与文档化(29/64)是最主要目标,远超系统现代化(16/64)和迁移(11/64)等高级应用。值得注意的是,尽管工业遗留系统多为过程式语言,现有方法却明显偏向Java等面向对象语言(27种支持Java,仅5种支持C++),揭示学术研究与实际需求的差距。UML成为最流行的逆向工程输出表示形式。这些发现为组织选择遗留
2026-01-06 13:29:43
1747
原创 【论文精读】基于逆向工程序列图的程序理解
对于软件工程师来说,最常见的挑战之一莫过于接手一个庞大、复杂或文档匮乏的遗留代码库。这个过程就像被扔进一座错综复杂的迷宫,却没有地图指引。每一行代码、每一个函数调用都可能是一个未知的岔路口,让人迷失方向。为了解决这个问题,“逆向工程”和“程序理解”领域应运而生,它们提供了一种解决方案:通过工具自动从代码中生成可视化图表(如序列图),将软件中那些看不见的逻辑清晰地呈现在我们面前。学术界提出了多种方法,旨在从给定系统中生成可满足不同需求的交互序列。
2026-01-04 12:15:41
1456
原创 【论文精读】从单系统架构到微服务架构:软件现代化的转型综述
微服务架构近年来作为开发复杂应用的手段已获得广泛关注。这种架构风格将软件组织为小型、模块化且独立部署的服务,每个服务在独立进程中运行,并通过轻量级、明确定义的机制进行通信以实现业务目标。尽管文献中已识别出诸多优势,但 MSA 的采用仍被视为重大挑战,无论是在开发新系统还是软件现代化方面。关于软件现代化问题,研究表明,组织对采用 MSA 持抵触态度。还有研究表明,向微服务架构的转型绝非单纯的技术决策,必须与系统最初设计的业务目标保持一致。
2025-12-30 17:52:02
722
原创 【论文精读】你的遗留系统正在耗尽预算:关于软件现代化,你必须知道的10个挑战
摘要: 遗留系统已成为全球企业面临的重要挑战,消耗大量IT预算(美国2019年达900亿美元,80%用于老旧系统维护)。研究提出软件现代化的10个关键挑战:1)知识体系不完整;2)方法选择盲目;3)混合环境构建;4)技术/组织/运营协同;5)多标准决策;6)数字化转型支持;7)预现代化准备;8)非侵入性方法;9)人才培养;10)中小企业适配。通过Seacord模型(替换/维护/演进/重构/迁移)和多维度视角框架,建立包含启动、规划、执行、过渡四阶段的工作流程。研究强调现代化是战略决策而非单纯技术升级,需平衡
2025-12-30 15:15:28
627
原创 【论文精读】Aligning Language Models to Explicitly Handle Ambiguity
作者提出了一种名为“感知歧义性对齐”(APA)的新型对齐流程,旨在通过利用模型自身的内在知识,增强 LLM 处理 query 中歧义性问题的能力。该方法采用隐式信息增益指标来量化模型自身感知到的模糊性,使模型能够基于该指标通过对齐操作有效管理歧义/非歧义查询。
2025-11-30 23:38:31
878
原创 【论文精读】Clarify When Necessary: Resolving Ambiguity Through Interaction with LMs
本文提出一个任务无关的评估框架,解决交互式AI助手在人机交互中的消歧问题。核心挑战在于如何确定何时需要与用户交互以澄清模糊请求。作者将模糊性量化为用户意图的熵,提出意图-SIM(intent-SIM)方法,通过模拟用户交互估算熵值来判断是否需要澄清。实验表明,该方法在识别需澄清的错误预测上优于其他不确定性评估基准。评估框架采用三阶段流程:识别需澄清的输入、生成澄清问答对、预测最终输出,并通过交互预算下的性能提升和AUROC指标验证效果。
2025-11-23 23:24:09
1314
1
原创 论文精读:Prompting Large Language Models to Tackle the Full Software Development Lifecycle
状态: Summarizing作者: Bowen Li机构: 上海人工智能实验室Publishing/Release Date: 2024年12月14日Summary: 现有的Benchmark主要聚焦于编码环节,例如单文件代码生成或者仓库问题调试,并不能全面衡量真实软件开发中的问题。这篇论文提出了DevEval,系统评估了LLMs在软件开发生命周期中各阶段的表现,涵盖软件设计、环境搭建、实现开发、验收测试及单元测试等全流程。
2025-07-22 11:34:52
871
原创 给人做项目,又不想让人看到源码或者复制拷贝,该怎么办?
本文分享了小程序开发中保护后端代码的经验。通过Django+Docker部署的项目面临甲方可能窃取代码的风险,作者采取了三重防护措施:1)利用阿里云容器镜像服务的访问凭证控制镜像权限;2)加密宿主机文件系统(需root权限);3)使用Nuitka将Python代码编译为可执行文件。重点介绍了第一种方案的实施细节,包括Github Actions自动化构建流程和严格的docker login/logout机制。虽然最终发现是虚惊一场,但这些防护措施已成为团队后续项目的标准配置,有效保障了代码安全。
2025-05-28 22:25:54
1394
原创 尝试一下 InstantX/FLUX.1-dev-IP-Adapter 的效果
从下面这个链接找到了一个新的工作流:https://github.com/Shakker-Labs/ComfyUI-IPAdapter-Flux/issues/35。
2024-12-05 17:43:51
1062
原创 The size of tensor a (4) must match the size of tensor b (8) at non-singleton dimension 1
的第二个维度也是 8,那就说明官方的。之后应该还有一些操作,再之后才进行的。的维度没有对上,其实也就是。找了一下应该是下面这段代码里的。然后打印了一下官方的。
2024-10-17 14:18:03
656
原创 Number of inference steps is ‘None‘, you need to run ‘set_timesteps‘ after creating the scheduler
按照报错的提示,需要增加一行。
2024-10-17 10:53:28
501
原创 ValueError: `added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.
是 forward 函数传进来的参数,在。,所以我们只需要把这部分代码加上即可。不为 None 的话,并且要。为 None,在这个函数里,这个报错也就是说如果。
2024-10-17 10:40:33
497
原创 ImportError: /root/paddlejob/apex-master/build/lib.linux-x86_64-3.9/fused_layer_norm_cuda.cpython-39
解决方案:卸载了 pytorch,重新安装了 torch==2.1.0,推测应该是编译的版本不匹配导致的。
2024-10-16 17:14:54
448
原创 ufunc ‘add‘ did not contain a loop with signature matching types (dtype(‘<U3‘), dtype(‘<U3‘))
可以发现 clip_score 的元素类型为字符串,那其实下面这个代码改一下就好了。这个看起来像是两个变量没有对齐导致的报错,一般是类型没有对齐。的报错,所以看起来应该是。的时候报错的,最后是。
2024-10-12 12:57:07
508
原创 HTTPSConnectionPool(host=‘nvlabs-fi-cdn.nvidia.com‘, port=443)
看最终的报错就知道,这是一个下载模型权重超时的报错,一般是由于资源可能在墙外,导致国内下载不到。解决这种问题的一个常见的方案就是把资源下载到本地,然后上传到服务器上,修改代码离线加载。根据下面这段代码,一层一层网上找,找到。
2024-10-11 12:59:34
603
原创 Accelerate + DeepSpeed 能否同时对多个模型进行分布式训练?
但是这两个模型都比较大,都放在一张卡上的话会 OutOfMemory,所以就想用 Accelerate + DeepSpeed 对模型进行切分。今天遇到一个问题,一个训练场景中需要两个模型交替优化,跟 GAN 比较类似。
2024-09-12 10:37:05
1803
2
原创 R语言文本挖掘、情感分析和可视化哈利波特小说文本数据
利用文本挖掘技术对哈利波特系列书籍进行情感分析,旨在探索这些书籍中情感的分布和变化。通过使用tidyversetidytext和等R语言包,可以提取并分析书籍中的情感词汇。
2024-07-01 17:24:00
1097
翻译 【翻译】如何在 RAG 应用中添加引用
本指南回顾了如何让模型在生成响应时添加引用的源文档的哪些部分。本文介绍了5种方法:1. 使用函数调用来引用文档ID;2. 使用函数调用来引用文档ID并提供文本片段;3. 直接使用提示词;4. 检索后处理(压缩检索到的上下文以使其更具相关性);5. 生成后处理(再次通过 LLM 来用引文注释生成的答案)。我们通常建议使用第 1 种方法,也就是说,如果模型支持函数调用,推荐方法 1 或 2;否则,或者如果这些方法失败,可以继续尝试其它方法。
2024-06-05 11:06:32
1463
原创 用Python获取Windows本机安装的所有应用程序的实现与分析
一个项目中需要获取本机安装的所有应用程序列表,花了一点时间研究了一下,分享出来。主要通过访问注册表和桌面快捷方式来完成这一任务,因为注册表中获取到的应用程序列表不完全,因此通过桌面快捷方式进行补充。
2024-06-02 15:01:54
1359
原创 论文精读:TASKBENCH: BENCHMARKING LARGE LANGUAGE MODELS FOR TASK AUTOMATION
LLM 带动了任务自动化的发展,它将用户指令描述的复杂任务分解为子任务,并调用外部工具来执行它们,在 Agent 中发挥着核心作用。但是目前还缺少系统化、标准化的基准来催 LLM 任务自动化的发展。任务自动化可以分为三个关键阶段:任务分解、工具调用和参数预测。为了生成高质量的评估数据集,作者引入了工具图的概念来表示用户意图中分解的任务,并采用反向指令方法来模拟用户指令和注释。作者还提出了 TASKEVAL,从不同方面评估 LLM 的能力,包括任务分解、工具调用和参数预测。
2024-05-28 19:30:57
1371
原创 论文精读:UFO: A UI-Focused Agent for Windows OS Interaction
UFO 是一种以 UI 为中心的 Agent,利用 GPT-Vision,针对 Windows 操作系统上的应用程序量身定制,能够独立完成用户请求。UFO 采用了双 Agent 框架,一个 Agent 用于仔细观察和分析应用程序的GUI和控制信息,另一个 Agent 则是负责选择合适的应用程序。这使得 UFO 能够在各个应用程序内以及跨应用程序进行操作,以满足用户请求。
2024-05-24 12:00:09
2319
原创 论文精读:HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
解决不同领域和多种模态的复杂任务是通往AGI的关键,尽管现在有各种各样的AI模型,但是它们没有办法自主地处理复杂任务,而LLMs恰好可以作为管理者控制现有的AI模型来完成任务。本文提出的HuggingGPT就是一个基于ChatGPT的Agent,可以利用HuggingFace上各种各样的AI模型来完成任务。首先通过ChatGPT根据用户的请求制定任务计划,然后根据HuggingFace上模型的功能描述选择可用的AI模型,之后通过这些模型来执行子任务,最后总结执行结果并给出响应。
2024-05-22 16:33:15
1645
2
原创 PyCharm 安装不了 Copilot ?报错:copilot Connect timed out
不知道为啥,之前PyCharm的Copilot用的好好的,但是我非要手欠给卸载了,结果在插件市场怎么安装都安装不上了,直接点 install 没有反应,然后在 JetBrains 上将插件下载到本地,然后从本地安装,也一直报错:Connect timed out。PyCharm打开Settings,Appearance - System Settings - HTTP Proxy,选择 Manual proxy configuration;,手动配置一下代理就行了,尝试了一下,确实有用。
2024-05-20 16:18:28
1137
原创 记一次 Celery 任务 FAILURE 的 debug 过程({“status“: “FAILURE“, “result“: {“exc_type“: “NotRegistered“……)
之前有一个业务功能中用到了 Django + Celery 做异步任务,一开始都是各个产品独立创建 Docker 容器,但是后面服务器的负载太高了,所以就转为了各个产品的后端用 Docker 创建容器,而像 MySQL 和 Redis 这种则是直接在服务器上进行操作。所以这就跟背景挂上钩了,因为失误,两个业务共用了一个 Redis 的桶来存 Celery 的任务,所以任务是被另外一个业务的 Celery 执行了,才会说。而且这个问题是偶发性的,有的时候会创建,有的时候不会创建。
2024-05-03 15:58:32
987
1
原创 2023年第十四届蓝桥杯 - 省赛 - C/C++大学A组 - B.有奖问答
一共 30 道题,得分情况为 0 ~ 100 分。创建一个 30 行 100 列的 dp 数组,dp[i][j] 表示做完第 i 题,得分为 j 的方案数。
2024-04-02 16:56:20
1082
原创 2023年第十四届蓝桥杯 - 省赛 - Python研究生组 - A.工作时长
直接通过 datetime 模块加载时间字符串进行格式化,然后对时间列表进行排序,最后两两计算时间差。
2024-04-01 23:40:35
846
1
原创 记一次 pdfplumber 内存泄漏导致的服务器宕机
我是通过 pdfplumber 加载的 PDF 文件,所以自然而然的去 pdfplumber 的 GitHub 上看看有没有人遇到类似的问题,果然找到了一个。本地跑没什么问题,但是一放到服务器上跑就会宕机,而且是毫无征兆的宕机,至少在宝塔面板上看到的宕机前的负载、CPU使用率和内存占用率还是正常的。在执行这个函数的过程中,通过 htop 命令实时观察内存占用,发现随着处理的页面越来越多,占用的内存也越来越多,直到服务器完全卡住,宕机了。所以问题就很明显了,服务器的资源不够,内存占满了,所以才导致了宕机。
2024-04-01 21:45:25
1270
原创 这应该是全网第一篇全面解读OpenAI Sora报告的文章,精读报告:Video generation models as world simulators
今天是2024年2月16号,大年初七,年还没过完,早晨起来朋友圈就被Sora刷屏了。本来以为没啥,都是公众号或者视屏啥的,都没点开看,直到看到我导也发了Sora的文章,我就知道这个事情不简单了。先来看一段非常炸裂的效果,就是下面这个视频。真的,如果你不跟我说这是AI生成的,我还以为是哪个电影的镜头呢。这场景,这运镜,这清晰度,放大之后连脸上的斑都清晰可见,Oh my God,现实不存在了,现实真的不存在了。Tokyo walk。
2024-02-16 20:40:23
3351
1
原创 作为国产大模型之光的智谱AI,究竟推出了多少模型?一篇文章带你详细了解!
总的来说,还是挺期待未来可以有所突破的!!!但是我觉得这个大模型算是国内的很不错的大模型了,起码gpt49有的它都有,虽然是打折版的。并且使用也免费,已经挺够意思了。正如张鹏所言,和国外大模型相比,国内的大模型发展起步晚一些,加上高性能算力的限制和数据质量的差距等等,国内研发的大模型无论规模还是核心能力,与世界先进水平还存在一年左右的差距。但是未来一年,我们将有希望看见国内大模型的崛起之路!pvs=4。
2024-02-15 16:06:08
2504
原创 论文精读:InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
视觉基座模型还没有基于CNN的大模型CNN不具有长距离依赖性和自适应空间聚合能力改进了DCNv2一方面是模型做大之后效果怎么样,另一方面关注是否解决了长距离依赖性和自适应空间聚合能力。
2024-01-29 12:58:22
1651
原创 论文精读:VMamba Visual State Space Model
Institution: 中国科学院大学(UCAS), 华为, 鹏城实验室Summary: CNNs和ViTs是视觉特征表示领域常用的两个基座模型,CNNs具有显著的可扩展性,线性复杂度与图像分辨率相关,ViTs的拟合能力更强,通过注意力机制的全局感受野和动态权重可以有更好的表现,但是复杂度是二次的。本文提出了一种新的架构——VMamba(Visual State Space Model),继承了CNNs和ViTs的优点,同时还提高了计算效率,在不牺牲全局感受野的情况下可以达到线性复杂度。
2024-01-23 14:30:11
26415
原创 论文精读:Improving CLIP Training with Language Rewrites
Summary: CLIP模型通过对比损失进行训练,这通常依赖于数据增强来防止过拟合,但是在CLIP的训练过程中,只对图像进行了数据增强,并没有对文本进行数据增强。基于此,这篇文章提出了文本增强CLIP(Language augmented CLIP, LaCLIP),利用大语言模型的ICL能力,对每张图片的文本描述进行重写。重写的文本保持原意不变,在句子结构和文本表达上具有多样性。在模型训练的时候,随机选择采用原始文本还是重写的文本。
2024-01-22 14:26:09
1627
原创 论文精读:Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models
大规模视觉-语言模型(Large Vision-Language Models,LVLMs)基本上使用得都是同一个视觉词表——CLIP,它也适用于大部分的视觉任务。但是,对于一些特殊的任务往往需要更密集和更细致的感知,比如文档OCR和图标理解,特别是对于非英语场景,CLIP的词表在分词时往往比较低效,并且还可能会遇到无法分词的问题。基于此问题,作者提出了Vary(Vary),一种有效扩展LVLMs视觉词表的方法。
2024-01-12 12:09:04
2151
1
原创 论文精读:EVA-CLIP Improved Training Techniques for CLIP
Summary: 作者使用了一系列方法来提升CLIP的训练效率和效果,包括新的表示学习方法、更换优化器和数据增强技术,使得EVA-CLIP相比于具有相同参数量的模型徐连成本更小,性能更优。
2024-01-10 14:29:00
4836
原创 ElasticSearch环境准备
Elasticsearch 在许多应用中被广泛使用,包括日志和事件数据分析、内容搜索、数据可视化、地理搜索等。在本应用中,我们有大量的非结构化文档要存储(PDF、TXT和HTML),而ElasticSearch恰好可以帮助我们实现相应的检索功能。然后,创建一个Elasticsearch客户端实例,并连接到本地运行在9200端口上的Elasticsearch服务器。6.灵活的查询语言:Elasticsearch 提供了一种非常灵活的查询语言,可以执行简单的文本查询到复杂的聚合查询。
2023-10-07 18:18:20
1004
面向对象&网络编程基础·第1章面向对象 开发一套选课系统
2022-03-19
股票信息查询程序-Python作业
2022-02-12
函数编程作业 网站访问日志分析
2022-02-19
HousePrices.zip
2020-02-10
apache-hive-2.1.1-bin.tar.gz.zip
2020-06-08
mysql-8.0.11-winx64.msi
2020-02-07
hadoop-2.7.3.tar.gz.zip
2020-06-07
jdk-8u171-linux-x64.tar.gz.zip
2020-06-05
sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz.zip
2020-06-08
机器人写诗测试数据集 poemsTest.txt
2019-07-10
hbase-1.2.4-bin.tar.gz.zip
2020-06-07
zookeeper-3.4.10.tar.gz.zip
2020-06-06
mysql-8.0.19-winx64.zip
2020-02-07
spark-2.4.0-bin-hadoop2.7.tgz.zip
2020-06-08
Matrix Studio Second Assessment.zip
2019-10-29
Redis-x64-3.0.504.zip
2020-04-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅